HER3 signaling and targeted therapy in cancer

  • Rosalin Mishra | mishrarn@ucmail.uc.edu James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States. http://orcid.org/0000-0002-9808-8797
  • Hima Patel James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States.
  • Samar Alanazi James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States.
  • Long Yuan James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States.
  • Joan T. Garrett James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States.

Abstract

ERBB family members including epidermal growth factor receptor (EGFR) also known as HER1, ERBB2/HER2/Neu, ERBB3/HER3 and ERBB4/HER4 are aberrantly activated in multiple cancers and hence serve as drug targets and biomarkers in modern precision therapy. The therapeutic potential of HER3 has long been underappreciated, due to impaired kinase activity and relatively low expression in tumors. However, HER3 has received attention in recent years as it is a crucial heterodimeric partner for other EGFR family members and has the potential to regulate EGFR/HER2-mediated resistance. Upregulation of HER3 is associated with several malignancies where it fosters tumor progression via interaction with different receptor tyrosine kinases (RTKs). Studies also implicate HER3 contributing significantly to treatment failure, mostly through the activation of PI3K/AKT, MAPK/ERK and JAK/STAT pathways. Moreover, activating mutations in HER3 have highlighted the role of HER3 as a direct therapeutic target. Therapeutic targeting of HER3 includes abrogating its dimerization partners’ kinase activity using small molecule inhibitors (lapatinib, erlotinib, gefitinib, afatinib, neratinib) or direct targeting of its extracellular domain. In this review, we focus on HER3-mediated signaling, its role in drug resistance and discuss the latest advances to overcome resistance by targeting HER3 using mono- and bispecific antibodies and small molecule inhibitors.

Downloads

Download data is not yet available.

References

Hynes, N.E.a. and G. MacDonald, ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol, 2009. 21(2): p. 177-84.

Olayioye, M.A., et al., The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J, 2000. 19(13): p. 3159-67.

Cho, H.S., et al., Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature, 2003. 421(6924): p. 756-60.

Riese, D.J., 2nd and D.F. Stern, Specificity within the EGF family/ErbB receptor family signaling network. Bioessays, 1998. 20(1): p. 41-8.

Yarden, Y. and M.X. Sliwkowski, Untangling the ErbB signalling network. Nat Rev Mol Cell Biol, 2001. 2(2): p. 127-37.

Baselga, J. and S.M. Swain, Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer, 2009. 9(7): p. 463-75.

Amin, D.N., M.R. Campbell, and M.M. Moasser, The role of HER3, the unpretentious member of the HER family, in cancer biology and cancer therapeutics. Semin Cell Dev Biol, 2010. 21(9): p. 944-50.

Junttila, T.T., et al., Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell, 2009. 15(5): p. 429-40.

Kraus, M.H., et al., Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci U S A, 1989. 86(23): p. 9193-7.

Plowman, G.D., et al., Molecular cloning and expression of an additional epidermal growth factor receptor-related gene. Proc Natl Acad Sci U S A, 1990. 87(13): p. 4905-9.

Tanner, B., et al., ErbB-3 predicts survival in ovarian cancer. J Clin Oncol, 2006. 24(26): p. 4317-23.

Lipton, A., et al., HER3, p95HER2, and HER2 protein expression levels define multiple subtypes of HER2-positive metastatic breast cancer. Breast Cancer Res Treat, 2013. 141(1): p. 43-53.

Koumakpayi, I.H., et al., Expression and nuclear localization of ErbB3 in prostate cancer. Clin Cancer Res, 2006. 12(9): p. 2730-7.

Hayashi, M., et al., High expression of HER3 is associated with a decreased survival in gastric cancer. Clin Cancer Res, 2008. 14(23): p. 7843-9.

Nielsen, T.O., et al., Co-expression of HER3 and MUC1 is associated with a favourable prognosis in patients with bladder cancer. BJU Int, 2015. 115(1): p. 163-5.

Siegfried, J.M., et al., Expression of PAM50 genes in lung cancer: evidence that interactions between hormone receptors and HER2/HER3 contribute to poor outcome. Neoplasia, 2015. 17(11): p. 817-25.

Reschke, M., et al., HER3 is a determinant for poor prognosis in melanoma. Clin Cancer Res, 2008. 14(16): p. 5188-97.

Beji, A., et al., Toward the prognostic significance and therapeutic potential of HER3 receptor tyrosine kinase in human colon cancer. Clin Cancer Res, 2012. 18(4): p. 956-68.

Qian, G., et al., Heregulin and HER3 are prognostic biomarkers in oropharyngeal squamous cell carcinoma. Cancer, 2015. 121(20): p. 3600-11.

Liles, J.S., et al., ErbB3 expression promotes tumorigenesis in pancreatic adenocarcinoma. Cancer Biol Ther, 2010. 10(6): p. 555-63.

Travis, A., et al., C-erbB-3 in human breast carcinoma: expression and relation to prognosis and established prognostic indicators. Br J Cancer, 1996. 74(2): p. 229-33.

Siegel, P.M., et al., Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer. EMBO J, 1999. 18(8): p. 2149-64.

Servidei, T., et al., Chemoresistant tumor cell lines display altered epidermal growth factor receptor and HER3 signaling and enhanced sensitivity to gefitinib. Int J Cancer, 2008. 123(12): p. 2939-49.

Lee-Hoeflich, S.T., et al., A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res, 2008. 68(14): p. 5878-87.

Vaught, D.B., et al., HER3 is required for HER2-induced preneoplastic changes to the breast epithelium and tumor formation. Cancer Res, 2012. 72(10): p. 2672-82.

Garrett, J.T., et al., Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc Natl Acad Sci U S A, 2011. 108(12): p. 5021-6.

Chandarlapaty, S., et al., AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell, 2011. 19(1): p. 58-71.

Fujiwara, S., et al., Association of ErbB1-4 expression in invasive breast cancer with clinicopathological characteristics and prognosis. Breast Cancer, 2014. 21(4): p. 472-81.

Morrison, M.M., et al., ErbB3 downregulation enhances luminal breast tumor response to antiestrogens. J Clin Invest, 2013. 123(10): p. 4329-43.

Balko, J.M., et al., The receptor tyrosine kinase ErbB3 maintains the balance between luminal and basal breast epithelium. Proc Natl Acad Sci U S A, 2012. 109(1): p. 221-6.

Curley, M.D., et al., Seribantumab, an anti-ERBB3 Antibody, delays the onset of resistance and restores sensitivity to letrozole in an estrogen receptor-positive breast cancer model. Mol Cancer Ther, 2015. 14(11): p. 2642-52.

Collins, D., et al., Direct estrogen receptor (ER) / HER family crosstalk mediating sensitivity to lumretuzumab and pertuzumab in ER+ breast cancer. PLoS One, 2017. 12(5): p. e0177331.

Mishra, R., et al. Genomic alterations of ERBB receptors in cancer: clinical implications.Oncotarget, 2017. 8(69): p. 114371-114392.

Jaiswal, B.S., et al., Oncogenic ERBB3 mutations in human cancers. Cancer Cell, 2013. 23(5): p. 603-17.

Mishra, R., et al., Oncogenic potential of ERBB3 mutations in human mammary epithelial cells. Cancer Res, 2017.77(4):(Suppl; pp. P4-21-22).

Newby, J.C., et al., Expression of epidermal growth factor receptor and c-erbB2 during the development of tamoxifen resistance in human breast cancer. Clin Cancer Res, 1997. 3(9): p. 1643-51.

Shou, J., et al., Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst, 2004. 96(12): p. 926-35.

Tovey, S., et al., Can molecular markers predict when to implement treatment with aromatase inhibitors in invasive breast cancer? Clin Cancer Res, 2005. 11(13): p. 4835-42.

Liu, B., et al., Downregulation of erbB3 abrogates erbB2-mediated tamoxifen resistance in breast cancer cells. Int J Cancer, 2007. 120(9): p. 1874-82.

Clark, A.S., et al., Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther, 2002. 1(9): p. 707-17.

Jordan, N.J., et al., Increased constitutive activity of PKB/Akt in tamoxifen resistant breast cancer MCF-7 cells. Breast Cancer Res Treat, 2004. 87(2): p. 167-80.

Jathal, M.K., et al., Targeting ErbB3: the new RTK(id) on the prostate cancer block. Immunol Endocr Metab Agents Med Chem, 2011. 11(2): p. 131-149.

Hutcheson, I.R., et al., Fulvestrant-induced expression of ErbB3 and ErbB4 receptors sensitizes oestrogen receptor-positive breast cancer cells to heregulin beta1. Breast Cancer Res, 2011. 13(2): p. R29.

Frogne, T., et al., Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant. Breast Cancer Res Treat, 2009. 114(2): p. 263-75.

Vlacich, G. and R.J. Coffey, Resistance to EGFR-targeted therapy: a family affair. Cancer Cell, 2011. 20(4): p. 423-5.

Kruser, T.J. and D.L. Wheeler, Mechanisms of resistance to HER family targeting antibodies. Exp Cell Res, 2010. 316(7): p. 1083-100.

Yonesaka, K., et al., Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci Transl Med, 2011. 3(99): p. 99ra86.

Huang, S., et al., Dual targeting of EGFR and HER3 with MEHD7945A overcomes acquired resistance to EGFR inhibitors and radiation. Cancer Res, 2013. 73(2): p. 824-33.

Engelman, J.A., et al., MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 2007. 316(5827): p. 1039-43.

Abel, E.V., et al., Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. J Clin Invest, 2013. 123(5): p. 2155-68.

Montero-Conde, C., et al., Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov, 2013. 3(5): p. 520-33.

Zhang, S., et al., Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat Med, 2011. 17(4): p. 461-9.

Agus, D.B., et al., Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell, 2002. 2(2): p. 127-37.

Lu, Y., et al., Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst, 2001. 93(24): p. 1852-7.

Nahta, R., et al., Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res, 2005. 65(23): p. 11118-28.

Huang, X., et al., Heterotrimerization of the growth factor receptors erbB2, erbB3, and insulin-like growth factor-i receptor in breast cancer cells resistant to herceptin. Cancer Res, 2010. 70(3): p. 1204-14.

Chakrabarty, A., et al., Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Proc Natl Acad Sci U S A, 2012. 109(8): p. 2718-23.

Bezler, M., J.G. Hengstler, and A. Ullrich, Inhibition of doxorubicin-induced HER3-PI3K-AKT signalling enhances apoptosis of ovarian cancer cells. Mol Oncol, 2012. 6(5): p. 516-29.

Knuefermann, C., et al., HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene, 2003. 22(21): p. 3205-12.

Wang, S., et al., Elevated expression of erbB3 confers paclitaxel resistance in erbB2-overexpressing breast cancer cells via upregulation of Survivin. Oncogene, 2010. 29(29): p. 4225-36.

Schoeberl, B., et al., An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res, 2010. 70(6): p. 2485-94.

Fitzgerald, J.B., et al., MM-141, an IGF-IR- and ErbB3-directed bispecific antibody, overcomes network adaptations that limit activity of IGF-IR inhibitors. Mol Cancer Ther, 2014. 13(2): p. 410-25.

McDonagh, C.F., et al., Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol Cancer Ther, 2012. 11(3): p. 582-93.

Miller, M.J., et al., HER-3 peptide vaccines/mimics: Combined therapy with IGF-1R, HER-2, and HER-1 peptides induces synergistic antitumor effects against breast and pancreatic cancer cells. Oncoimmunology, 2014. 3(11): p. e956012.

Sarup, J., et al., Human epidermal growth factor receptor (HER-1:HER-3) Fc-mediated heterodimer has broad antiproliferative activity in vitro and in human tumor xenografts. Mol Cancer Ther, 2008. 7(10): p. 3223-36.

Huang, Z., et al., A pan-HER approach for cancer therapy: background, current status and future development. Expert Opin Biol Ther, 2009. 9(1): p. 97-110.

Wu, Y., et al., Downregulation of HER3 by a novel antisense oligonucleotide, EZN-3920, improves the antitumor activity of EGFR and HER2 tyrosine kinase inhibitors in animal models. Mol Cancer Ther, 2013. 12(4): p. 427-37.

Xie, T., et al., Pharmacological targeting of the pseudokinase Her3. Nat Chem Biol, 2014. 10(12): p. 1006-12.

Kawakami, H., et al., The anti-HER3 antibody patritumab abrogates cetuximab resistance mediated by heregulin in colorectal cancer cells. Oncotarget, 2014. 5(23): p. 11847-56.

Wakui, H., et al., Phase 1 and dose-finding study of patritumab (U3-1287), a human monoclonal antibody targeting HER3, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol, 2014. 73(3): p. 511-6.

Nishio, M., et al., Phase I study of the HER3-targeted antibody patritumab (U3-1287) combined with erlotinib in Japanese patients with non-small cell lung cancer. Lung Cancer, 2015. 88(3): p. 275-81.

Yonesaka, K., et al., Anti-HER3 monoclonal antibody patritumab sensitizes refractory non-small cell lung cancer to the epidermal growth factor receptor inhibitor erlotinib. Oncogene, 2016. 35(7): p. 878-86.

Daiichi Sankyo.Study of patritumab in combination with erlotinib in subjects with locally advanced or metastatic non-small-cell lung cancer (NSCLC). ClinicalTrials.gov 2018: NCT02134015.

Daiichi Sankyo. Patritumab with cetuximab and a platinum containing therapy for patients with head and neck cancer. ClinicalTrials.gov 2017: NCT02350712.

Daiichi Sankyo. Phase 1b/2 study of U3-1287 in combination with trastuzumab plus paclitaxel in newly diagnosed metastatic breast cancer (MBC). ClinicalTrials.gov 2017: NCT01512199.

Daiichi Sankyo. U3-1402 in metastatic or unresectable EGFR-mutant non-small cell lung cancer.ClinicalTrials.gov 2018: NCT03260491.

Merrimack. A study of MM-121 in combination with paclitaxel in patients with advanced gynecologic and breast cancers. ClinicalTrials.gov 2016: NCT01209195.

Merrimack. A safety study of MM-121 with cetuximab and irinotecan in patients with advanced cancers. ClinicalTrials.gov 2016:NCT01451632.

Frankie, A.H., et al, A randomized, phase 2 trial of preoperative MM-121 with paclitaxel in triple negative (TN) and hormone receptor (HR) positive, HER2-negative breast cancer.Cancer Res, 2014. 77(9):(Suppl;pp. P3-11-03).

Merrimack. Phase I safety study of the drug MM-121 in patients with advanced solid tumors resisting ordinary treatment. ClinicalTrials.gov 2016:NCT00734305.

Liu, J.F., et al., Randomized phase II trial of seribantumab in combination with paclitaxel in patients with advanced platinum-resistant or -refractory ovarian cancer. J Clin Oncol, 2016. 34(36): p. 4345-4353.

Wang, S., et al., Therapeutic targeting of erbB3 with MM-121/SAR256212 enhances antitumor activity of paclitaxel against erbB2-overexpressing breast cancer. Breast Cancer Res, 2013. 15(5): p. R101.

Huang, J., et al., The anti-erbB3 antibody MM-121/SAR256212 in combination with trastuzumab exerts potent antitumor activity against trastuzumab-resistant breast cancer cells. Mol Cancer, 2013. 12(1): p. 134.

Jiang, N., et al., Combination of anti-HER3 antibody MM-121/SAR256212 and cetuximab inhibits tumor growth in preclinical models of head and neck squamous cell carcinoma. Mol Cancer Ther, 2014. 13(7): p. 1826-36.

Merrimack. A study of MM-121 in combination with chemotherapy versus chemotherapy alone in heregulin positive NSCLC. ClinicalTrials.gov 2018: NCT02387216.

Lecia, V.S., et al, A phase 2 study of seribantumab (MM-121) in combination with docetaxel or pemetrexed versus docetaxel or pemetrexed alone in patients with heregulin positive (HRG+), locally advanced or metastatic non-small cell lung cancer (NSCLC). J Clin Oncol, 2016. 34(15) :(suppl; abstr TPS9110).

Merrimack. A study of MM-121 combination therapy in patients with advanced non-small cell lung cancer. ClinicalTrials.gov 2016: NCT00994123.

Merrimack. Phase 2 trial of seribantumab plus fulvestrant in postmenopausal women with metastatic breast cancer (SHERBOC).ClinicalTrials.gov 2017: NCT03241810.

Moyo, V.M., A randomized, double-blind phase II trial of exemestane with or without MM-121 in postmenopausal women with locally advanced or metastatic estrogen receptor-positive (ER+) and/or progesterone receptor-positive (PR+), HER2-negative breast cancer. J Clin Oncol, 2015. 29(15): (Suppl. abstr TPS112).

Merrimack. Phase 1 combination study of MM-151 with MM-121, MM-141, or trametinib. ClinicalTrials.gov 2016: NCT02538627.

Arnedos, M., A phase I study of MM-121 in combination with multiple anticancer therapies in patients with advanced solid tumors. J Clin Oncol, 2013. 31(15): (suppl; abstr 2609 ).

Sanofi. A study of investigational SAR256212 in combination with SAR245408 in patients with solid tumor cancers.ClinicalTrials.gov 2014: NCT01436565.

Meneses-Lorente, G., et al., Preclinical pharmacokinetics, pharmacodynamics, and efficacy of RG7116: a novel humanized, glycoengineered anti-HER3 antibody. Cancer Chemother Pharmacol, 2015. 75(4): p. 837-50.

Mirschberger, C., et al., RG7116, a therapeutic antibody that binds the inactive HER3 receptor and is optimized for immune effector activation. Cancer Res, 2013. 73(16): p. 5183-94.

Roche. A study to evaluate RO5479599 in combination with perjeta (pertuzumab) and paclitaxel in patients with metastatic breast cancer expressing HER3 & HER2 protein. ClinicalTrials.gov 2017: NCT01918254.

Meulendijks, D., et al., First-in-human phase I study of lumretuzumab, a glycoengineered humanized anti-HER3 monoclonal antibody, in patients with metastatic or advanced HER3-positive solid tumors. Clin Cancer Res, 2016. 22(4): p. 877-85.

Roche. A study evaluating RO5479599 in combination with carboplatin and paclitaxel in patients with advanced or metastatic non-small cell lung cancer (NSCLC) of squamous histology. ClinicalTrials.gov 2017: NCT02204345.

Meulendijks, D., et al., Phase Ib study of lumretuzumab plus cetuximab or erlotinib in solid tumor patients and evaluation of HER3 and heregulin as potential biomarkers of clinical activity. Clin Cancer Res, 2017. 23(18): p. 5406-5415.

Garner, A.P., et al., An antibody that locks HER3 in the inactive conformation inhibits tumor growth driven by HER2 or neuregulin. Cancer Res, 2013. 73(19): p. 6024-35.

Garrett, J.T., et al., Combination of antibody that inhibits ligand-independent HER3 dimerization and a p110alpha inhibitor potently blocks PI3K signaling and growth of HER2+ breast cancers. Cancer Res, 2013. 73(19): p. 6013-23.

Novartis. Study of efficacy and safety of LJM716 and cetuximab in head and neck squamous cell carcinoma patients. ClinicalTrials.gov 2016: NCT02143622.

Novartis. Open-label study evaluating the safety and tolerability of LJM716, BYL719 and trastuzumab in patients with metastatic HER2+ breast cancer. ClinicalTrials.gov 2017: NCT02167854.

Novartis. Phase I study LJM716 combined with trastuzumab in patients with HER2 overexpressing metastatic breast or gastric cancer. ClinicalTrials.gov 2017: NCT01602406.

Novartis. Study of safety & efficacy of the combination of LJM716 & BYL719 in patients with previously treated esophageal squamous cell carcinoma (ESCC). ClinicalTrials.gov 2017: NCT01822613.

Reynolds. K.L., et al., A phase 1 study of LJM716 in patients with esophageal squamous cell carcinoma, head and neck cancer, or HER2-overexpressing metastatic breast or gastric cancer. J Clin Oncol, 2014. 32(5): (suppl; abstr 2517).

Esaki. T., et al., Phase I study of the safety and tolerability of LJM716 in Japanese patients with advanced solid tumors. Mol Can Ther, 2015. 14(12):pp. C120.

Xiao, Z., et al., A potent HER3 monoclonal antibody that blocks both ligand-dependent and -independent activities: differential impacts of PTEN status on tumor response. Mol Cancer Ther, 2016. 15(4): p. 689-701.

Kolltan. A phase 1 study to evaluate the safety and pharmacokinetics of KTN3379 in adult subjects with advanced tumors. ClinicalTrials.gov 2017: NCT02014909.

Bauer, T.M., et al., A phase 1, open-label study to evaluate the safety and pharmacokinetics of the anti ErbB3 antibody, KTN3379, alone or in combination with targeted therapies in patients with advanced tumors. J Clin Oncol, 2015. 33 (15): (suppl; abstr 2598).

Celledex Therapeutics. Enhancing radioiodine incorporation into BRAF mutant thyroid cancers with the combination of vemurafenib and KTN3379. ClinicalTrials.gov 2017: NCT02456701.

Celldex Therapeutics. A window of opportunity study of KTN3379 in surgically resectable Head and Neck cancer patients. ClinicalTrials.gov 2017: NCT02473731.

Meetze, K., et al., Neuregulin 1 expression is a predictive biomarker for response to AV-203, an ERBB3 inhibitory antibody, in human tumor models. Clin Cancer Res, 2015. 21(5): p. 1106-14.

AVEO. A phase 1 dose escalation study of AV-203, an ERBB3 inhibitory antibody, in subjects with advanced solid tumors. ClinicalTrials.gov 2015: NCT01603979.

GlaxoSmithKline. Dose escalation study to investigate the safety, pharmacokinetics, and pharmacodynamics of GSK2849330 in subjects with advanced HER3-positive solid tumors. ClinicalTrials.gov 2017: NCT01966445.

GlaxoSmithKline. Immuno positron emission tomography study of GSK2849330 in subjects with human epidermal growth factor receptor 3-positive solid tumors. ClinicalTrials.gov 2017: NCT02345174.

Papadopoulos, K.P., et al., Phase I study of REGN1400 (anti-ErbB3) combined with erlotinib or cetuximab in patients (pts) with advanced non-small cell lung cancer (NSCLC), colorectal cancer (CRC), or head and neck cancer (SCCHN). J Clin Oncol, 2014.32(15): p.2516.

Zhang, L., et al., ERBB3/HER2 signaling promotes resistance to EGFR blockade in head and neck and colorectal cancer models. Mol Cancer Ther, 2014. 13(5): p. 1345-55.

Sala, G., et al., An ErbB-3 antibody, MP-RM-1, inhibits tumor growth by blocking ligand-dependent and independent activation of ErbB-3/Akt signaling. Oncogene, 2012. 31(10): p. 1275-86.

Schaefer, G., et al., A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer Cell, 2011. 20(4): p. 472-86.

Kamath, A.V., et al., Preclinical pharmacokinetics of MEHD7945A, a novel EGFR/HER3 dual-action antibody, and prediction of its human pharmacokinetics and efficacious clinical dose. Cancer Chemother Pharmacol, 2012. 69(4): p. 1063-9.

Juric, D., et al., Safety and Pharmacokinetics/Pharmacodynamics of the First-in-Class Dual Action HER3/EGFR Antibody MEHD7945A in Locally Advanced or Metastatic Epithelial Tumors. Clin Cancer Res, 2015. 21(11): p. 2462-70.

Genentech. A study of MEHD7945A and cobimetinib (GDC-0973) in patients with locally advanced or metastatic cancers with mutant KRAS. ClinicalTrials.gov 2016: NCT01986166.

Genentech. A study of MEHD7945A + FOLFIRI versus cetuximab + FOLFIRI in second line in patients with KRAS wild-type metastatic colorectal cancer. ClinicalTrials.gov 2016: NCT01652482.

Genentech. A study of MEHD7945A versus cetuximab in patients with recurrent/metastatic squamous cell carcinoma of the head and neck. ClinicalTrials.gov 2016: NCT01577173.

Jimeno, A., et al., Phase Ib study of duligotuzumab (MEHD7945A) plus cisplatin/5-fluorouracil or carboplatin/paclitaxel for first-line treatment of recurrent/metastatic squamous cell carcinoma of the head and neck. Cancer, 2016. 122(24): p. 3803-3811.

Denlinger. C.S., et al., Randomized open-label phase 2 study of MM-111 and paclitaxel (PTX) with trastuzumab (TRAS) in patients with HER2-expressing carcinomas of the distal esophagus, gastroesophageal (GE) junction, and stomach who have failed front-line metastatic or locally advanced therapy. J Clin Oncol, 2014. 32 (5): (suppl; abstr TPS4148).

Merrimack. A study of MM-111 in patients with advanced, refractory HER2 amplified, heregulin positive cancers (monotherapy).ClinicalTrials.gov 2015: NCT00911898.

Merrimack. MM-111 in combination with herceptin in patients with advanced HER2 amplified, heregulin positive breast cancer. ClinicalTrials.gov 2015: NCT01097460.

Richards. D.A., et al., A phase 1 study of MM-111, a bispecific HER2/HER3 antibody fusion protein, combined with multiple treatment regimens in patients with advanced HER2-positive solid tumors. J Clin Oncol, 2014. 32 (15): (suppl; abstr 651).

Merrimack. A phase 1 study of MM-141 in patients with advanced solid tumors. ClinicalTrials.gov 2016: NCT01733004.

Ko, A.H., et al., A multicenter phase II study of istiratumab (MM-141) plus nab-paclitaxel (A) and gemcitabine (G) in metastatic pancreatic cancer (MPC). J Clin Oncol, 2016. 34(5): (suppl; abstr TPS481).

Calvo. E., et al. A phase I/II study of MCLA-128, a full length IgG1 bispecific antibody targeting HER2 and HER3, in patients with solid tumors. Cancer Res, 2016. 76 (14):(Suppl; pp. CT050).

Merus N.V. MCLA-128 With trastuzumab/chemotherapy in HER2+ and with endocrine Therapy in ER+ and Low HER2 breast cancer.ClinicalTrials.gov 2016: NCT03321981.

Farooqi, A.A., Z.U. Rehman, and J. Muntane, Antisense therapeutics in oncology: current status. Onco Targets Ther, 2014. 7: p. 2035-42.

Jacobsen, H.J., et al., Pan-HER, an Antibody Mixture Simultaneously Targeting EGFR, HER2, and HER3, Effectively Overcomes Tumor Heterogeneity and Plasticity. Clin Cancer Res, 2015. 21(18): p. 4110-22.

Francis, D.M., et al., Pan-HER Inhibitor Augments Radiation Response in Human Lung and Head and Neck Cancer Models. Clin Cancer Res, 2016. 22(3): p. 633-43.

Symphogen. Sym013 (Pan-HER) in patients with advanced epithelial malignancies. ClinicalTrials.gov 2017: NCT02906670.

Mendell, J., et al., Clinical Translation and Validation of a Predictive Biomarker for Patritumab, an Anti-human Epidermal Growth Factor Receptor 3 (HER3) Monoclonal Antibody, in Patients With Advanced Non-small Cell Lung Cancer. EBioMedicine, 2015. 2(3): p. 264-71.

Karachaliou, N. and R. Rosell, Evaluation of Biomarkers for HER3-targeted Therapies in Cancer. EBioMedicine, 2015. 2(3): p. 192-3.

Sarantoloulos, J.M.S.G., et al., First-in-human phase 1 dose-escalation study of AV-203, a monoclonal antibody against ERBB3, in patients with metastatic or advanced solid tumors. J Clin Oncol, 2014. 32(5): (suppl; abstr 11113).

Shames, D.S., et al., High heregulin expression is associated with activated HER3 and may define an actionable biomarker in patients with squamous cell carcinomas of the head and neck. PLoS One, 2013. 8(2): p. e56765.

Holbro, T., et al., The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A, 2003. 100(15): p. 8933-8.

Published
2018-05-16
Section
Reviews
Keywords:
HER3, monoclonal antibodies, targeted therapy.
Statistics
Abstract views: 2401

PDF: 1065
HTML: 410
Share it

PlumX Metrics

PlumX Metrics provide insights into the ways people interact with individual pieces of research output (articles, conference proceedings, book chapters, and many more) in the online environment. Examples include, when research is mentioned in the news or is tweeted about. Collectively known as PlumX Metrics, these metrics are divided into five categories to help make sense of the huge amounts of data involved and to enable analysis by comparing like with like.

How to Cite
Mishra, R., Patel, H., Alanazi, S., Yuan, L., & Garrett, J. T. (2018). HER3 signaling and targeted therapy in cancer. Oncology Reviews, 12(1). https://doi.org/10.4081/oncol.2018.355