Thrombocytopenia in solid tumors: Prognostic significance

  • Majid Ghanavat Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran, Islamic Republic of.
  • Mina Ebrahimi Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Islamic Republic of.
  • Hassan Rafieemehr Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran, Islamic Republic of.
  • Mahmood Maniati Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Islamic Republic of.
  • Masumeh Maleki Behzad Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Islamic Republic of.
  • Saeid Shahrabi | sshahrabi45@yahoo.com Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University Of Medical Sciences, Semnan, Iran, Islamic Republic of.

Abstract

Solid tumors are a heterogeneous group of malignancies that result from out-of-control proliferation of cells. Thrombocytopenia is a common complication among patients with solid tumors that predispose them to bleeding disorders. The aim of this review article is to investigate the underlying mechanisms of the risk and incidence of thrombocytopenia in solid tumors. It can be argued that thrombocytopenia is a poor prognostic factor in solid tumors that can result from several factors such as polymorphism and mutation in some transcription factors and cytokines involved in megakaryocytic maturation or from the adverse effects of treatment. Therefore, an understanding of the exact mechanism of thrombocytopenia pathogenesis in each stage of solid tumors can help in developing therapeutic strategies to decrease bleeding complications in these malignancies.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Carlson RW, Allred DC, Anderson BO, et al. Metastatic breast cancer, version 1.2012 featured updates to the nccn guidelines. J Natl Compr Canc Net 2012;10:821-29. DOI: https://doi.org/10.6004/jnccn.2012.0086

Khasraw M, Faraj H, Sheikha A. Thrombocytopenia in solid tumors. Eur J Clin Med Oncol 2010;2:89-92.

Khodadi E, Asnafi AA, Shahrabi S, et al. Bone marrow niche in immune thrombocytopenia: a focus on megakaryopoiesis. Ann Hematol 2016;95:1765-76. DOI: https://doi.org/10.1007/s00277-016-2703-1

Avvisati G, Tirindelli MC, Annibali O. Thrombocytopenia and hemorrhagic risk in cancer patients. Crit Rev Oncol Hematol 2003;48:S13-6. DOI: https://doi.org/10.1016/j.critrevonc.2003.04.001

Liebman HA. Thrombocytopenia in cancer patients. Thromb Res 2014;133:S63-9. DOI: https://doi.org/10.1016/S0049-3848(14)50011-4

Goldszmid RS, Trinchieri G. The price of immunity. Nat Immunol 2012;13:932. DOI: https://doi.org/10.1038/ni.2422

Shahrabi S, Behzad MM, Jaseb K, et al. Thrombocytopenia in leukemia: Pathogenesis and prognosis. Histol Histopathol 2018;33:895-908.

Rezaeeyan H, Jaseb K, Alghasi A, et al. Association between gene polymorphisms and clinical features in idiopathic thrombocytopenic purpura patients. Blood Coagul Fibrinolysis 2017;28:617-22. DOI: https://doi.org/10.1097/MBC.0000000000000646

Arend WP. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev 2002;13:323-40. DOI: https://doi.org/10.1016/S1359-6101(02)00020-5

Yadav DK, Tripathi AK, Gupta D, et al. Interleukin-1B (IL-1B-31 and IL-1B-511) and interleukin-1 receptor antagonist (IL-1Ra) gene polymorphisms in primary immune thrombocytopenia. Blood Res 2017;52:264-9. DOI: https://doi.org/10.5045/br.2017.52.4.264

Pooja S, Chaudhary P, Nayak LV, et al. Polymorphic variations in IL-1β, IL-6 and IL-10 genes, their circulating serum levels and breast cancer risk in Indian women. Cytokine 2012;60:122-8. DOI: https://doi.org/10.1016/j.cyto.2012.06.241

Eaton KD, Romine PE, Goodman GE, et al. Inflammatory gene polymorphisms in lung cancer susceptibility. J Thorac Oncol 2018;13:649-59. DOI: https://doi.org/10.1016/j.jtho.2018.01.022

Basavaraju U, Shebl FM, Palmer AJ, et al. Cytokine gene polymorphisms, cytokine levels and the risk of colorectal neoplasia in a screened population of Northeast Scotland. Eur J Cancer Prev 2015;24:296. DOI: https://doi.org/10.1097/CEJ.0000000000000087

Rodríguez-Berriguete G, Sánchez-Espiridión B, Cansino JR, et al. Clinical significance of both tumor and stromal expression of components of the IL-1 and TNF-α signaling pathways in prostate cancer. Cytokine 2013;64:555-63. DOI: https://doi.org/10.1016/j.cyto.2013.09.003

Essayan DM, Fox CC, Levi-Schaffer F, et al. Biologic activities of IL-1 and its role in human disease. J Allergy Clin Immunol Pract 1998;102:344-50. DOI: https://doi.org/10.1016/S0091-6749(98)70118-6

Satoh T, Pandey J, Okazaki Y, et al. Single nucleotide polymorphism of interleukin-1β associated with Helicobacter pylori infection in immune thrombocytopenic purpura. Tissue Antigens 2009;73:353-7. DOI: https://doi.org/10.1111/j.1399-0039.2009.01214.x

Xue H, Lin B, Ni P, et al. Interleukin-1B and interleukin-1 RN polymorphisms and gastric carcinoma risk: A meta-analysis. J Gastroenterol Hepatol 2010;25:1604-17. DOI: https://doi.org/10.1111/j.1440-1746.2010.06428.x

Ying HY, Yu BW, Yang Z, et al. Interleukin-1B 31 C> T polymorphism combined with Helicobacter pylori-modified gastric cancer susceptibility: evidence from 37 studies. J Cell Mol Med 2016;20:526-36. DOI: https://doi.org/10.1111/jcmm.12737

Ma D, Zhu X, Zhao P, et al. Profile of Th17 cytokines (IL-17, TGF-β, IL-6) and Th1 cytokine (IFN-γ) in patients with immune thrombocytopenic purpura. Ann Hematol 2008;87:899-904. DOI: https://doi.org/10.1007/s00277-008-0535-3

Talar-Wojnarowska R, Gasiorowska A, Smolarz B, et al. Clinical significance of interleukin-6 (IL-6) gene polymorphism and IL-6 serum level in pancreatic adenocarcinoma and chronic pancreatitis. Dig Dis Sci 2009;54:683-9. DOI: https://doi.org/10.1007/s10620-008-0390-z

Liu Y, Gao S-J, Du B-X, et al. Association of IL-6 polymorphisms with hepatocellular carcinoma risk: evidences from a meta-analysis. Tumor Biol 2014;35:3551-61. DOI: https://doi.org/10.1007/s13277-013-1469-5

Belluco C OF, Bonafè M, Giovagnetti S, et al. -174 G>C polymorphism of interleukin 6 gene promoter affects interleukin 6 serum level in patients with colorectal cancer. Clin Cancer Res 2003;9:2173-76.

Gomes M, Coelho A, Araújo A, et al. IL-6 polymorphism in non-small cell lung cancer: a prognostic value? Tumor Biol 2015;36:3679-84. DOI: https://doi.org/10.1007/s13277-014-3006-6

Attar M, Mansoori M, Shahbazi M. Interleukin-6 Genetic Variation and Susceptibility to Gastric Cancer in an Iranian Population. Asian Pac J Cancer Prev 2017;18:3025.

Hefler LA, Grimm C, Ackermann S, et al. An interleukin-6 gene promoter polymorphism influences the biological phenotype of ovarian cancer. Cancer Res 2003;63:3066-68.

Recordare A, Bonariol L, Caratozzolo E, et al. Management of spontaneous bleeding due to hepatocellular carcinoma. Minerva Chir 2002;57:347-56.

Zhang J, Min QH, Xu YM, et al. Association Between TNF-alpha -308G/A Polymorphism and Risk of Immune Thrombocytopenia: A Meta-Analysis. Genet Test Mol Biomarkers 2017;21:80-5. DOI: https://doi.org/10.1089/gtmb.2016.0163

Sarpatwari A, Bussel JB, Ahmed M, et al. Single nucleotide polymorphism (SNP) analysis demonstrates a significant association of tumour necrosis factor-alpha (TNFA) with primary immune thrombocytopenia among Caucasian adults. Hematology 2011;16:243-48. DOI: https://doi.org/10.1179/102453311X13025568941808

Pehlivan M, Okan V, Sever T, et al. Investigation of TNF-alpha, TGF-beta 1, IL-10, IL-6, IFN-gamma, MBL, GPIA, and IL1A gene polymorphisms in patients with idiopathic thrombocytopenic purpura. Platelets 2011;22:588-95. DOI: https://doi.org/10.3109/09537104.2011.577255

Bower JE, Ganz PA, Irwin MR, et al. Cytokine genetic variations and fatigue among patients with breast cancer. J Clin Oncol 2013;31:1656-61. DOI: https://doi.org/10.1200/JCO.2012.46.2143

Xie H, Yao H, Huo Y, et al. Association between TNF-alpha gene 308G>A polymorphism and lung cancer risk: a meta-analysis. Tumour Biol 2014;35:9693-9. DOI: https://doi.org/10.1007/s13277-014-2265-6

Du LC, Gao R. Role of TNF-alpha -308G/A gene polymorphism in gastric cancer risk: A case control study and meta-analysis. Turk J Gastroenterol 2017;28:272-82. DOI: https://doi.org/10.5152/tjg.2017.16741

Yang Y, Luo C, Feng R, et al. The TNF-alpha, IL-1B and IL-10 polymorphisms and risk for hepatocellular carcinoma: a meta-analysis. J Cancer Res Clin Oncol 2011;137:947-52. DOI: https://doi.org/10.1007/s00432-010-0959-8

Garrity-Park MM, Loftus EV, Jr., Bryant SC, et al. A Biomarker Panel to Detect Synchronous Neoplasm in Non-neoplastic Surveillance Biopsies from Patients with Ulcerative Colitis. Inflamm Bowel Dis 2016;22:1568-74. DOI: https://doi.org/10.1097/MIB.0000000000000789

Ahmed AB, Zidi S, Sghaier I, et al. Common variants in IL-1RN, IL-1beta and TNF-alpha and the risk of ovarian cancer: a case control study. Cent Eur J Immunol 2017;42:150-5. DOI: https://doi.org/10.5114/ceji.2017.69356

Pucheanu X, Beuran M. Bleeding gastric cancer in young and elderly patients. J Med Life 2015;8:356-60.

Bresnick EH, Lee HY, Fujiwara T, et al. GATA switches as developmental drivers. J Biol Chem 2010;285:31087-93. DOI: https://doi.org/10.1074/jbc.R110.159079

Farrar JD, Ouyang W, Lohning M, et al. An instructive component in T helper cell type 2 (Th2) development mediated by GATA-3. J Exp Med 2001;193:643-50. DOI: https://doi.org/10.1084/jem.193.5.643

Yao R, Lin Y, Li Q, et al. Downregulation of T-bet/GATA-3 ratio induced by IL-11 treatment is responsible for Th1/Th2 balance restoration in human immune thrombocytopenic purpura (ITP). J Thromb Thrombolysis 2014;38:183-9. DOI: https://doi.org/10.1007/s11239-013-1036-3

Behzad MM, Asnafi AA, Jaseb K, et al. Expression of CD markers’ in immune thrombocytopenic purpura: prognostic approaches. APMIS 2017;125:1042-55. DOI: https://doi.org/10.1111/apm.12755

Behzad MM, Asnafi AA, Jalalifar MA, et al. Cellular expression of CD markers in immune thrombocytopenic purpura: implications for prognosis. APMIS 2018;126:523-32. DOI: https://doi.org/10.1111/apm.12853

Takaku M, Grimm SA, Wade PA. GATA3 in breast cancer: tumor suppressor or oncogene? Gene Expr 2015;16:163-8. DOI: https://doi.org/10.3727/105221615X14399878166113

Melazzini F, Palombo F, Balduini A, et al. Clinical and pathogenic features of ETV6-related thrombocytopenia with predisposition to acute lymphoblastic leukemia. Haematologica 2016;101:1333-42. DOI: https://doi.org/10.3324/haematol.2016.147496

Shivdasani RA. Molecular and transcriptional regulation of megakaryocyte differentiation. Stem Cells 2001;19:397-407. DOI: https://doi.org/10.1634/stemcells.19-5-397

Noetzli L, Lo RW, Lee-Sherick AB, et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet 2015;47:535-8. DOI: https://doi.org/10.1038/ng.3253

Tognon C, Knezevich SR, Huntsman D, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002;2:367-76. DOI: https://doi.org/10.1016/S1535-6108(02)00180-0

Leeman-Neill RJ, Kelly LM, Liu P, et al. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer 2014;120:799-807. DOI: https://doi.org/10.1002/cncr.28484

Yuan X, Wang X, Bi K, et al. The role of EVI-1 in normal hematopoiesis and myeloid malignancies (Review). Int J Oncol 2015;47:2028-36. DOI: https://doi.org/10.3892/ijo.2015.3207

Fang Z, Zhang YZ, Cai T, et al. [Expression of transforming growth factor-beta1 and its receptors in peripheral blood of patients with immune thrombocytopenic purpura]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2012;20:664-6.

Deng X, Cao Y, Liu Y, et al. Overexpression of Evi-1 oncoprotein represses TGF-beta signaling in colorectal cancer. Mol Carcinog 2013;52:255-64. DOI: https://doi.org/10.1002/mc.21852

Wang TY, Huang YP, Ma P. Correlations of common polymorphism of EVI-1 gene targeted by miRNA-206/133b with the pathogenesis of breast cancer. Tumour Biol 2014;35:9255-62. DOI: https://doi.org/10.1007/s13277-014-2213-5

Mark M, Rijli FM, Chambon P. Homeobox genes in embryogenesis and pathogenesis. Ped Res 1997;42:421. DOI: https://doi.org/10.1203/00006450-199710000-00001

Magli MC, Largman C, Lawrence HJ. Effects of HOX homeobox genes in blood cell differentiation. J Cllul Physiol 1997;173:168-77. DOI: https://doi.org/10.1002/(SICI)1097-4652(199711)173:2<168::AID-JCP16>3.0.CO;2-C

Horvat-Switzer RD, Thompson AA. HOXA11 Mutation in Amegakaryocytic Thrombocytopenia with Radio-Ulnar Synostosis Syndrome Inhibits Megakaryocytic Differentiation In vitro. Blood Cells Mol Dis 2006;37:55-63. DOI: https://doi.org/10.1016/j.bcmd.2006.04.001

Li Q, Chen C, Ren X, et al. DNA methylation profiling identifies the HOXA11 gene as an early diagnostic and prognostic molecular marker in human lung adenocarcinoma. Oncotarget 2017;8:33100-9. DOI: https://doi.org/10.18632/oncotarget.16528

Bai Y, Fang N, Gu T, et al. HOXA11 gene is hypermethylation and aberrant expression in gastric cancer. Cancer Cell Int 2014;14:79. DOI: https://doi.org/10.1186/s12935-014-0079-7

Xia B, Shan M, Wang J, et al. Homeobox A11 hypermethylation indicates unfavorable prognosis in breast cancer. Oncotarget 2017;8:9794. DOI: https://doi.org/10.18632/oncotarget.14216

Bluteau D, Glembotsky AC, Raimbault A, et al. Dysmegakaryopoiesis of FPD/AML pedigrees with constitutional RUNX1 mutations is linked to myosin II deregulated expression. Blood 2012;120:2708-18. DOI: https://doi.org/10.1182/blood-2012-04-422337

Rokutan H, Hosoda F, Hama N, et al. Comprehensive mutation profiling of mucinous gastric carcinoma. J Pathol 2016;240:137-48. DOI: https://doi.org/10.1002/path.4761

Kim LA, Amarnani D, Gnanaguru G, et al. Tamoxifen toxicity in cultured retinal pigment epithelial cells is mediated by concurrent regulated cell death mechanisms. Invest Ophthalmol Vis Sci 2014;55:4747-58. DOI: https://doi.org/10.1167/iovs.13-13662

Wong J, Tran LT, Magun EA, et al. Production of IL-1β by bone marrow-derived macrophages in response to chemotherapeutic drugs: synergistic effects of doxorubicin and vincristine. Cancer Biol Ther 2014;15:1395-403. DOI: https://doi.org/10.4161/cbt.29922

Faubel S, Lewis EC, Reznikov L, et al. Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1β, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther 2007;322:8-15. DOI: https://doi.org/10.1124/jpet.107.119792

Pusztai L, Mendoza TR, Reuben JM, et al. Changes in plasma levels of inflammatory cytokines in response to paclitaxel chemotherapy. Cytokine 2004;25:94-102. DOI: https://doi.org/10.1016/j.cyto.2003.10.004

Teixeira A, Mendes-Junior CT, Marano L, et al. Alleles and genotypes of polymorphisms of IL-18, TNF-α and IFN-γ are associated with a higher risk and severity of hepatocellular carcinoma (HCC) in Brazil. Hum Immunol 2013;74:1024-9. DOI: https://doi.org/10.1016/j.humimm.2013.04.029

Talaat R, Elmaghraby A, Barakat S, et al. Alterations in immune cell subsets and their cytokine secretion profile in childhood idiopathic thrombocytopenic purpura (ITP). Clin Exp Immunol 2014;176:291-300. DOI: https://doi.org/10.1111/cei.12279

Audia S, Mahévas M, Samson M, et al. Pathogenesis of immune thrombocytopenia. Autoimmunity Rev 2017;16:620-32. DOI: https://doi.org/10.1016/j.autrev.2017.04.012

Liu B, Zhao H, Poon MC, et al. Abnormality of CD4+ CD25+ regulatory T cells in idiopathic thrombocytopenic purpura. Eur J Haematol 2007;78:139-43.

Wang JD, Chang TK, Lin HK, et al. Reduced expression of transforming growth factor-beta1 and correlated elevation of interleukin-17 and interferon-gamma in pediatric patients with chronic primary immune thrombocytopenia (ITP). Ped Blood Cancer 2011;57:636-40. DOI: https://doi.org/10.1002/pbc.22984

Iida T, Iwahashi M, Katsuda M, et al. Tumor-infiltrating CD4+ Th17 cells produce IL-17 in tumor microenvironment and promote tumor progression in human gastric cancer. Oncol Rep 2011;25:1271-7.

Chang SH, Mirabolfathinejad SG, Katta H, et al. T helper 17 cells play a critical pathogenic role in lung cancer. Proc Natl Acad Sci U S A 2014;111:5664-9. DOI: https://doi.org/10.1073/pnas.1319051111

Yang S, Wang B, Guan C, et al. Foxp3+ IL-17+ T cells promote development of cancer-initiating cells in colorectal cancer. J Leukoc Biol 2011;89:85-91. DOI: https://doi.org/10.1189/jlb.0910506

Lee Y, Bae S. Association between interferon-γ+ 874 T/A polymorphism and susceptibility to autoimmune diseases: a meta-analysis. Lupus 2016;25:710-18. DOI: https://doi.org/10.1177/0961203315624557

Li C-J, Dai Y, Fu Y-J, et al. RETRACTED ARTICLE: Correlations of IFN-γ genetic polymorphisms with susceptibility to breast cancer: a meta-analysis. Tumor Biol 2014;35:6867-77. DOI: https://doi.org/10.1007/s13277-014-1856-6

Mi Y-Y, Yu Q-Q, Xu B, et al. Interferon gamma+ 874 T/A polymorphism contributes to cancer susceptibility: a meta-analysis based on 17 case-control studies. Mol Biol Rep 2011;38:4461-67. DOI: https://doi.org/10.1007/s11033-010-0575-3

Schiffer CA, Bohlke K, Delaney M, et al. Platelet transfusion for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 2017;36:283-99. DOI: https://doi.org/10.1200/JCO.2017.76.1734

Published
2019-05-14
Info
Issue
Section
Reviews
Keywords:
Thrombocytopenia, solid tumors, chemotherapy, cytokines polymorphism.
Statistics
  • Abstract views: 946

  • PDF: 666
  • HTML: 52
How to Cite
Ghanavat, M., Ebrahimi, M., Rafieemehr, H., Maniati, M., Maleki Behzad, M., & Shahrabi, S. (2019). Thrombocytopenia in solid tumors: Prognostic significance. Oncology Reviews, 13(1). https://doi.org/10.4081/oncol.2019.413

Most read articles by the same author(s)