RETRACTED - The biological mechanism involved in anticancer properties of amniotic membrane

  • Ameneh Jafari Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran, Islamic Republic of.
  • Hassan Niknejad Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, Islamic Republic of.
  • Mostafa Rezaei-Tavirani Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran, Islamic Republic of.
  • Hakimeh Zali | h.zali@sbmu.ac.ir Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran; Nanotechnology and Tissue Engineering Research Center, School of Advanced Technologies in Medicine, ShahidBeheshti University of Medical Sciences, Tehran, Iran, Islamic Republic of.

Abstract

This paper has been retracted. See the Retraction note at: https://doi.org/10.4081/oncol.2020.493

Erratum in: https://doi.org/10.4081/oncol.2021.536

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Mamede AC, Carvalho MJ, Abrantes AM, et al. Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 2012;349:447-58. DOI: https://doi.org/10.1007/s00441-012-1424-6

Vidane AS, Souza AF, Sampaio RV, et al. Cat amniotic membrane multipotent cells are nontumorigenic and are safe for use in cell transplantation. Stem Cell Cloning 2014;7:71.

Zali H, Jafari A. Anticancer properties of amniotic membrane epithelial cells. JGPT 2016;12:22-9.

Dorazehi F, Nabiuni M, Jalali H. Potential use of amniotic membrane-derived scaffold for cerebrospinal fluid applications. Int J Mol Cell Med 2018;7:91.

Farhadihosseinabadi B, Farahani M, Tayebi T, et al. Amniotic membrane and its epithelial and mesenchymal stem cells as an appropriate source for skin tissue engineering and regenerative medicine. Artif Cells Nanomed Biotechnol 2018;46:431-40. DOI: https://doi.org/10.1080/21691401.2018.1458730

Mohan R, Bajaj A, Gundappa M. Human amnion membrane: potential applications in oral and periodontal field. J Int Soc Prev Community Dent 2017;7:15-21. DOI: https://doi.org/10.4103/jispcd.JISPCD_359_16

Peirovi H, Rezvani N, Hajinasrollah M, et al. Implantation of amniotic membrane as a vascular substitute in the external jugular vein of juvenile sheep. J Vasc Surg 2012;56:1098-104. DOI: https://doi.org/10.1016/j.jvs.2012.02.036

Niknejad H, Peirovi H, Jorjani M, et al. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cells Mater 2008;15:88-99. DOI: https://doi.org/10.22203/eCM.v015a07

Rennie K, Gruslin A, Hengstschläger M, et al. Applications of amniotic membrane and fluid in stem cell biology and regenerative medicine. Stem Cells International 2012;2012:1-14. DOI: https://doi.org/10.1155/2012/721538

Barski D, Gerullis H, Ecke T, et al. Bladder reconstruction with human amniotic membrane in a xenograft rat model: a preclinical study. Int J Med Sci 2017;14:310-18 DOI: https://doi.org/10.7150/ijms.18127

Niknejad H, Yazdanpanah G. Anticancer effects of human amniotic membrane and its epithelial cells. Med Hypothes 2014;82:488-9. DOI: https://doi.org/10.1016/j.mehy.2014.01.034

Modaresifar K, Azizian S, Zolghadr M, et al. The effect of cryopreservation on anti-cancer activity of human amniotic membrane. Cryobiology 2017;74:61-7. DOI: https://doi.org/10.1016/j.cryobiol.2016.12.001

Khan N, Afaq F, Mukhtar H. Lifestyle as risk factor for cancer: Evidence from human studies. Cancer Lett 2010;293:133-43. DOI: https://doi.org/10.1016/j.canlet.2009.12.013

Santi A, Kugeratski FG, Zanivan S. Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics 2018;18:1700167.1-14. DOI: https://doi.org/10.1002/pmic.201700167

Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70. DOI: https://doi.org/10.1016/S0092-8674(00)81683-9

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74. DOI: https://doi.org/10.1016/j.cell.2011.02.013

Zhang CL, Huang T, Wu BL, et al. Stem cells in cancer therapy: opportunities and challenges. Oncotarget 2017;8:75756-66. DOI: https://doi.org/10.18632/oncotarget.20798

Jenq RR, Van den Brink MR. Allogeneic haematopoietic stem cell transplantation: individualized stem cell and immune therapy of cancer. Nature Rev Cancer 2010;10:213-9. DOI: https://doi.org/10.1038/nrc2804

Agraval U, Rundle P, Rennie IG, et al. Fresh frozen amniotic membrane for conjunctival reconstruction after excision of neoplastic and presumed neoplastic conjunctival lesions. Eye 2017;31:884-9. DOI: https://doi.org/10.1038/eye.2016.322

Palamar M, Yaman B, Akalın T, et al. Amniotic membrane transplantation in surgical treatment of conjunctival melanoma: long-term results. Turk J Ophthamol 2018;48:15-8. DOI: https://doi.org/10.4274/tjo.62681

Tabatabaei M, Mosaffa N, Ghods R, et al. Vaccination with human amniotic epithelial cells confer effective protection in a murine model of colon adenocarcinoma. IJC 2018;142:1453-66. DOI: https://doi.org/10.1002/ijc.31159

Rhind N, Russell P. Signaling pathways that regulate cell division. Cold Spring Harb Perspect Biol 2012;4:1-16. DOI: https://doi.org/10.1101/cshperspect.a005942

Sherr CJ, Bartek J. Cell cycle-targeted cancer therapies. Annu. Rev. Cancer Biol 2017;1:41-57.

Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair 2016;42:63-71. DOI: https://doi.org/10.1016/j.dnarep.2016.04.008

Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 2017;17:93-115. DOI: https://doi.org/10.1038/nrc.2016.138

Seo JH, Kim YH, Kim JS. Properties of the amniotic membrane may be applicable in cancer therapy. Med Hypothes 2008;70:812-4. DOI: https://doi.org/10.1016/j.mehy.2007.08.008

Kim JC, Tseng SC. The effects on inhibition of corneal neovascularization after human amniotic membrane transplantation in severely damaged rabbit corneas. KJO 1995;9:32-46.

Kim SH, Bang SH, Kang SY, et al. Human amniotic membrane-derived stromal cells (hAMSC) interact depending on breast cancer cell type through secreted molecules. Tissue Cell 2015;47:10-6. DOI: https://doi.org/10.1016/j.tice.2014.10.003

Bu S, Zhang Q, Wang Q, Lai D. Human amniotic epithelial cells inhibit growth of epithelial ovarian cancer cells via TGF‑β1-mediated cell cycle arrest. Int J Oncol 2017;51;1405-14. DOI: https://doi.org/10.3892/ijo.2017.4123

Niknejad H, Khayat-Khoei M, Peirovi H. Inhibition of MMPs might increase anticancer properties of amniotic epithelial cells. Med Hypothes 2012;5:690-1. DOI: https://doi.org/10.1016/j.mehy.2012.02.014

Magatti M, De Munari S, Vertua E, et al. Amniotic membrane‐derived cells inhibit proliferation of cancer cell lines by inducing cell cycle arrest. JCMM 2012;16:2208-18. DOI: https://doi.org/10.1111/j.1582-4934.2012.01531.x

Wirt SE, Sage J. p107 in the public eye: an Rb understudy and more. Cell Div 2010;5:9-22. DOI: https://doi.org/10.1186/1747-1028-5-9

Ouyang L, Shi Z, Zhao S, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 2012;45:487-98. DOI: https://doi.org/10.1111/j.1365-2184.2012.00845.x

Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013;499:214-8. DOI: https://doi.org/10.1038/nature12213

Ling L, Feng X, Wei T, et al. Human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation improves ovarian function in rats with premature ovarian insufficiency (POI) at least partly through a paracrine mechanism. Stem Cell Res Ther 2019;10:46-64. DOI: https://doi.org/10.1186/s13287-019-1136-x

Jiao H, Guan F, Yang B, et al. Human amniotic membrane derived-mesenchymal stem cells induce C6 glioma apoptosis in vivo through the Bcl-2/caspase pathways. Mol Biol Rep 2012;39:467-73. DOI: https://doi.org/10.1007/s11033-011-0760-z

Tseng SC. HC-HA/PTX3 purified from amniotic membrane as novel regenerative matrix: insight into relationship between inflammation and regeneration. Invest Ophthalmol Vis Sci 2016;57:ORSFh1-8. DOI: https://doi.org/10.1167/iovs.15-17637

Bauer D, Hennig M, Wasmuth S, et al. Amniotic membrane induces peroxisome proliferator-activated receptor-γ positive alternatively activated macrophages. Invest Ophthalmol Vis Sci 2012;53:799-810. DOI: https://doi.org/10.1167/iovs.11-7617

Mamede AC, Guerra S, Laranjo M, et al. Selective cytotoxicity and cell death induced by human amniotic membrane in hepatocellular carcinoma. Med Oncol 2015;32:257. DOI: https://doi.org/10.1007/s12032-015-0702-z

Niknejad H, Khayat-Khoei M, Peirovi H, Abolghasemi H. Human amniotic epithelial cells induce apoptosis of cancer cells: a new anti-tumor therapeutic strategy. Cytotherapy 2014;16:33-40. DOI: https://doi.org/10.1016/j.jcyt.2013.07.005

Rodina A, Vilenchik M, Moulick K, et al. Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nat Chem Biol 2003;498-507. DOI: https://doi.org/10.1038/nchembio.2007.10

Niknejad H, Yazdanpanah G, Mirmasoumi M, et al. Inhibition of HSP90 could be possible mechanism for anti-cancer property of amniotic membrane. Med Hypotheses 2013;81:862-5. DOI: https://doi.org/10.1016/j.mehy.2013.08.018

Li H, Niederkorn JY, Neelam S, et al. Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 2005;46:900-7. DOI: https://doi.org/10.1167/iovs.04-0495

Rossin A, Miloro G, Hueber AO. TRAIL and FasL functions in cancer and autoimmune diseases: towards an increasing complexity. Cancers 2019;11:639. DOI: https://doi.org/10.3390/cancers11050639

Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029-33. DOI: https://doi.org/10.1126/science.1160809

Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nature Rev Cancer 2011;11:85-95. DOI: https://doi.org/10.1038/nrc2981

Mamede AC, Laranjo M, Carvalho MJ, et al. Effect of amniotic membrane proteins in human cancer cell lines: an exploratory study. J Membr Biol 2014;247:357-60. DOI: https://doi.org/10.1007/s00232-014-9642-3

Mittal D, Gubin MM, Schreiber RD, et al. New insights into cancer immunoediting and its three component phases - elimination, equilibrium and escape. Curr Opin Immunol 2014;27:16-25. DOI: https://doi.org/10.1016/j.coi.2014.01.004

Ramuta TŽ, Kreft ME. Human amniotic membrane and amniotic membrane–derived cells: how far are we from their use in regenerative and reconstructive urology? Cell Transplant 2018;27:77-92. DOI: https://doi.org/10.1177/0963689717725528

Kang NH, Hwang KA, Kim SU, et al. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells. Cancer Gene Ther 2012;19:517-22. DOI: https://doi.org/10.1038/cgt.2012.30

Magatti M, Vertua E, Cargnoni A, et al. The immunomodulatory properties of amniotic cells: the two sides of the coin. Cell Transplant 2018;27:31-44. DOI: https://doi.org/10.1177/0963689717742819

Magatti M, De Munari S, Vertua E, et al. Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes. Cell Transplant 2009;18:899-914. DOI: https://doi.org/10.3727/096368909X471314

He H, Li W, Chen SY, et al. Amniotic membrane extract suppresses activation and induces apoptosis in RAW264. 7 cells. Invest Ophthalmol Vis Sci 2008;49:4468-75.

Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res 2008;14:6735-41. DOI: https://doi.org/10.1158/1078-0432.CCR-07-4843

Takamori H, Oades ZG, Hoch RC, et al. Autocrine growth effect of IL-8 and GROα on a human pancreatic cancer cell line, capan-1. Pancreas 2000;21:52-6. DOI: https://doi.org/10.1097/00006676-200007000-00051

Yao C, Lin Y, Chua MS, et al. Interleukin‐8 modulates growth and invasiveness of estrogen receptor‐negative breast cancer cells. Int J Cancer 2007;121:1949-57. DOI: https://doi.org/10.1002/ijc.22930

Magatti M, Caruso M, De Munari S, et al. Human amniotic membrane-derived mesenchymal and epithelial cells exert different effects on monocyte-derived dendritic cell differentiation and function. Cell Transplant 2015;24:1733-52. DOI: https://doi.org/10.3727/096368914X684033

Chang CJ, Yen ML, Chen YC, et al. Placenta‐derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon‐γ. Stem Cells 2006;24:2466-77. DOI: https://doi.org/10.1634/stemcells.2006-0071

Laranjeira P, Duque M, Vojtek M, et al. Amniotic membrane extract differentially regulates human peripheral blood T cell subsets, monocyte subpopulations and myeloid dendritic cells. Cell Tissue Res 2018;1-18. DOI: https://doi.org/10.1007/s00441-018-2822-1

Pianta S, Signoroni PB, Muradore I, et al. Amniotic membrane mesenchymal cells-derived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev 2015;11:394-407. DOI: https://doi.org/10.1007/s12015-014-9558-4

He H, Li W, Chen SY, et al. Suppression of activation and induction of apoptosis in RAW264. 7 cells by amniotic membrane extract. Invest Ophthalmol Vis Sci 2008;49:4468-75. DOI: https://doi.org/10.1167/iovs.08-1781

Han Y, Jo H, Cho JH, et al. Resveratrol as a tumor-suppressive nutraceutical modulating tumor microenvironment and malignant behaviors of cancer. Int J Mol Sci 2019;20:925. DOI: https://doi.org/10.3390/ijms20040925

Katayama Y, Uchino J, Chihara Y, et al. Tumor neovascularization and developments in therapeutics. Cancers 2019;11:316. DOI: https://doi.org/10.3390/cancers11030316

Niknejad H, Paeini-Vayghan G, Tehrani FA, et al. Side dependent effects of the human amnion on angiogenesis. Placenta 2013;34:340-5. DOI: https://doi.org/10.1016/j.placenta.2013.02.001

Roubelakis MG, Tsaknakis G, Pappa KI, et al. Spindle shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization. PLoS One 2013;8:e54747. DOI: https://doi.org/10.1371/journal.pone.0054747

Niknejad H, Yazdanpanah G, Ahmadiani A. Induction of apoptosis, stimulation of cell-cycle arrest and inhibition of angiogenesis make human amnion-derived cells promising sources for cell therapy of cancer. Cell Tissue Res 2016;363:599-608. DOI: https://doi.org/10.1007/s00441-016-2364-3

Hossain L, Siddika A, Adnan MH, et al. Human amniotic membrane and its anti-cancer mechanism: a good hope for cancer therapy. SN Comp Clin Med 2019;1-9. DOI: https://doi.org/10.1007/s42399-019-00090-5

Dickson MA. Molecular pathways: CDK4 inhibitors for cancer therapy. Clin Cancer Res 2014;20:3379-83. DOI: https://doi.org/10.1158/1078-0432.CCR-13-1551

Koob TJ, Lim JJ, Massee M, et al. Angiogenic properties of dehydrated human amnion/chorion allografts: therapeutic potential for soft tissue repair and regeneration. Vasc Cell 2014;6:10. DOI: https://doi.org/10.1186/2045-824X-6-10

MiMedx Group, Inc. Use of human dehydrated amnion/chorion (DHACM) allograft in partial nephrectomy. NLM identifier: NCT03323021. Accessed: Aug 12, 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT03323021?term=amniotic+membrane&cond=Cancer&rank=5

Benha University. AS-OCT guided treatment of diffuse CSCC. NLM identifier: NCT03515954. Accessed: Aug 12, 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT03515954?term=amniotic+membrane&cond=Cancer&rank=2

M.D. Anderson Cancer Center. Randomized AminoFix Study during Radical Prostatectomy. NLM identifier: NCT02645591. Accessed: Aug 12, 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT02645591?term=amniotic+membrane&cond=Cancer&rank=3

Punnen S. Miami membrane for potency (MMEP) trial (MMEP). NLM identifier: NCT02710422. Accessed: Aug 12, 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT02710422?term=amniotic+membrane&cond=Cancer&rank=1

Banerjee A, Weidinger A, Hofer M, et al. Different metabolic activity in placental and reflected regions of the human amniotic membrane. Placenta 2015;36:1329-32. DOI: https://doi.org/10.1016/j.placenta.2015.08.015

Nourazarian S.M, Nourazarian A, Roshani Asl E. Investigate the Inhibitory effect of Amniotic membrane proteins on HSP90 gene Expression level in PC3 Prostate cell line. Bull Env Pharmacol Life Sci 2015;4:61-5.

Murri MS, Moshirfar M, Birdsong OC, et al. Amniotic membrane extract and eye drops: a review of literature and clinical application. Clin Ophthalmol (Auckland, NZ) 2018;12:1105-12. DOI: https://doi.org/10.2147/OPTH.S165553

Zhang Q, Sun J, Huang Y, et al. Human amniotic epithelial cell-derived exosomes restore ovarian function by transferring microRNAs against apoptosis. Mol Ther-Nucl Acids 2019;16:407-18. DOI: https://doi.org/10.1016/j.omtn.2019.03.008

Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomed Nanotechnol Biol Med 2016;12:655-64. DOI: https://doi.org/10.1016/j.nano.2015.10.012

Antimisiaris SG, Mourtas S, Marazioti A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics 2018;10:218-58. DOI: https://doi.org/10.3390/pharmaceutics10040218

Bunggulawa EJ, Wang W, Yin T, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnol 2018;16:81-94. DOI: https://doi.org/10.1186/s12951-018-0403-9

Published
2020-02-18
Info
Issue
Section
Reviews
Keywords:
Amniotic membrane, cancer, apoptosis, angiogenesis.
Statistics
  • Abstract views: 923

  • PDF: 328
  • HTML: 25
How to Cite
Jafari, A., Niknejad, H., Rezaei-Tavirani, M., & Zali, H. (2020). RETRACTED - The biological mechanism involved in anticancer properties of amniotic membrane. Oncology Reviews, 14(1). https://doi.org/10.4081/oncol.2020.429

Most read articles by the same author(s)