Management of COVID-19 in cancer patients receiving cardiotoxic anti-cancer therapy. Future recommendations for cardio-oncology

Abstract

Cardiotoxicity induced by anti-cancer treatment has become a significant threat as the number of cardiotoxic anti-cancer agents is growing. Cancer patients are at an increased risk of contracting coronavirus disease 2019 (COVID-19) because of immune suppression caused by anti-cancer drugs and/or supportive treatment. Deterioration in lung functions due to COVID-19 is responsible for many cardiac events. The presence of COVID-19 and some of its treatment modalities may increase the chance of cardiotoxicity development in cancer patients receiving potentially cardiotoxic agents. This review provides evidence-based information on the cardiotoxicity risk in cancer patients clinically diagnosed with COVID-19 who are receiving potentially cardiotoxic anti-cancer agents. Proposed strategies relating to the management of this patient cohorts are also discussed.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020;20:533-4. DOI: https://doi.org/10.1016/S1473-3099(20)30120-1

World Health Organization (WHO). Coronavirus disease dashboard; 2020. Available from: https://COVID19.who.int/ Accessed: 30 October 2020.

Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270-3. DOI: https://doi.org/10.1038/s41586-020-2012-7

Remuzzi A, Remuzzi G. COVID-19 and Italy: what next?. Lancet 2020;395:1225-8. DOI: https://doi.org/10.1016/S0140-6736(20)30627-9

Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507-13. DOI: https://doi.org/10.1016/S0140-6736(20)30211-7

Clerkin KJ, Fried JA, Raikhelkar J, et al. COVID-19 and cardiovascular disease. Circulation 2020;141:1648-55. DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.046941

Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 COVID-19. JAMA Cardiol 2020;5:1-8. DOI: https://doi.org/10.1001/jamacardio.2020.1017

Kuderer NM, Choueiri TK, Shah DP, et al. Clinical impact of COVID-19 on patients with cancer CCC19.: a cohort study. Lancet 2020;395:1907-18. DOI: https://doi.org/10.1016/S0140-6736(20)31187-9

Santoni M, Guerra F, Conti A, et al. Incidence and risk of cardiotoxicity in cancer patients treated with targeted therapies. Cancer Treat Rev 2017;59:123-31. DOI: https://doi.org/10.1016/j.ctrv.2017.07.006

Lenneman CG, Sawyer DB. Cardio-oncology: an update on cardiotoxicity of cancer-related treatment. Circ Res 2016;118:1008-20. DOI: https://doi.org/10.1161/CIRCRESAHA.115.303633

Colombo A, Cardinale D. Using cardiac biomarkers and treating cardiotoxicity in cancer. Future Cardiol 2013;9:105-18. DOI: https://doi.org/10.2217/fca.12.73

Polk A, Vaage-Nilsen M, Vistisen K, Nielsen DL. Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev 2013;39:974-84. DOI: https://doi.org/10.1016/j.ctrv.2013.03.005

Yoon GJ, Telli ML, Kao DP, et al. Left ventricular dysfunction in patients receiving cardiotoxic cancer therapies are clinicians responding optimally?. J Am Coll Cardiol 2010;56:1644-50. DOI: https://doi.org/10.1016/j.jacc.2010.07.023

Colombo A, Meroni CA, Cipolla CM, Cardinale D. Managing cardiotoxicity of chemotherapy. Curr Treat Options Cardiovasc Med 2013;15:410-24. DOI: https://doi.org/10.1007/s11936-013-0248-3

Pacher P, Kecskemeti V. Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?. Curr Pharm Des 2004;10:2463-75. DOI: https://doi.org/10.2174/1381612043383872

Ruane L, Buckley T, Hoo SYS, Hansen PS, et al. Triggering of acute myocardial infarction by respiratory infection. Intern Med J 2017;47:522-29. DOI: https://doi.org/10.1111/imj.13377

Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061-9. DOI: https://doi.org/10.1001/jama.2020.1585

Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020;17:259-60. DOI: https://doi.org/10.1038/s41569-020-0360-5

Vakili K, Fathi M, Pezeshgi A, et al. Critical complications of COVID-19: A descriptive meta-analysis study. Rev Cardiovasc Med 2020;21:433-42. DOI: https://doi.org/10.31083/j.rcm.2020.03.129

Yonas E, Alwi I, Pranata R, et al. Effect of heart failure on the outcome of COVID-19 - A meta analysis and systematic review. Am J Emerg Med 2020;S0735-675720.30602-1. DOI: https://doi.org/10.1016/j.ajem.2020.07.009

Zhang J, Tecson KM, McCullough PA. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy. Rev Cardiovasc Med 2020;21:315-9. DOI: https://doi.org/10.31083/j.rcm.2020.03.126

Zuchi C, Tritto I, Carluccio E, et al. Role of endothelial dysfunction in heart failure. Heart Fail Rev 2020;25:21-30. DOI: https://doi.org/10.1007/s10741-019-09881-3

Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin. Eur Heart J 2020;ehaa190. DOI: https://doi.org/10.1093/eurheartj/ehaa190

Zeng JH, Liu YX, Yuan J, et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection 2020;1-5. DOI: https://doi.org/10.20944/preprints202003.0180.v1

O'Laughlin JP, Mehta PH, Wong BC. Life threatening severe QTc prolongation in patient with systemic lupus erythematosus due to hydroxychloroquine. Case Rep Cardiol 2016;2016:4626279. DOI: https://doi.org/10.1155/2016/4626279

Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-62. DOI: https://doi.org/10.1016/S0140-6736(20)30566-3

Chorin E, Wadhwani L, Magnani S, et al. QT interval prolongation and torsade de pointes in patients with COVID-19 treated with hydroxychloroquine/azithromycin. Heart Rhythm 2020;S1547-5271:30435-5. DOI: https://doi.org/10.1101/2020.04.27.20074583

Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020;56:105949. DOI: https://doi.org/10.1016/j.ijantimicag.2020.105949

Fresse A, Viard D, Romani S, et al. Spontaneous reported cardiotoxicity induced by lopinavir/ritonavir in COVID-19. An alleged past-resolved problem. Int J Cardiol 2020 16:S0167-527320.33981-4.

Fan Q, Zhang B, Ma J, Zhang S. Safety profile of the antiviral drug remdesivir: An update. Biomed Pharmacother 2020;130:110532. DOI: https://doi.org/10.1016/j.biopha.2020.110532

Fried JA, Ramasubbu K, Bhatt R, et al. The variety of cardiovascular presentations of COVID-19. Circulation 2020;141:1930-6. DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.047164

Huang BH, Wu CH, Hsia CP, Chen CY. Azithromycin-induced torsade de pointes. Pacing Clin Electrophysiol 2007;30:1579-82. DOI: https://doi.org/10.1111/j.1540-8159.2007.00912.x

Kezerashvili A, Khattak H, Barsky A, et al. Azithromycin as a cause of QT-interval prolongation and torsade de pointes in the absence of other known precipitating factors. J Interv Card Electrophysiol 2007;18:243-6. DOI: https://doi.org/10.1007/s10840-007-9124-y

Mehra MR, Ruschitzka F, Patel AN. Retraction-Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet 2020;395:1820. DOI: https://doi.org/10.1016/S0140-6736(20)31324-6

Skipper CP, Pastick KA, Engen NW, et al. Hydroxychloroquine in nonhospitalized adults with early COVID-19: a randomized trial. Ann Intern Med 2020;173:623-31. DOI: https://doi.org/10.7326/M20-4207

Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med 2020;382:2327-36. DOI: https://doi.org/10.1056/NEJMoa2007016

Al-Tawfiq JA, Al-Homoud AH, Memish ZA. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med Infect Dis 2020;34:101615. DOI: https://doi.org/10.1016/j.tmaid.2020.101615

Olender SA, Perez KK, Go AS, et al. Remdesivir for severe COVID-19 versus a cohort receiving standard of care. Clin Infect Dis 2020;ciaa1041.

Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020;395:1569-78. DOI: https://doi.org/10.1016/S0140-6736(20)31022-9

United States National Library of Medicine. Remdesivir COVID-19 trials; 2020. Available from: https://www.clinicaltrials.gov/ct2/results?cond=COVID19&term=remdesivir&cntry=&state=&city=&dist= Accessed: 20 November 2020.

Cao B, Wang Y, Wen D, et al. A Trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med 2020;382:1787-99. DOI: https://doi.org/10.1056/NEJMoa2001282

Chaubey SK, Sinha AK, Phillips E, et al. Transient cardiac arrhythmias related to lopinavir/ritonavir in two patients with HIV infection. Sex Health 2009;6:254-7. DOI: https://doi.org/10.1071/SH09005

United States National Library of Medicine. Lopinavir/ritonavir COVID-19 trials; 2020. Available from: https://www.clinicaltrials.gov/ct2/results?cond=COVID19&term=Lopinavir%2Fritonavir&cntry=&state=&city=&dist= Accessed: 20 November 2020.

Shannon A, Selisko B, Le N, et al. Favipiravir strikes the SARS-CoV-2 at its Achilles heel, the RNA polymerase. Preprint. bioRxiv 2020;2020.05.15.098731. DOI: https://doi.org/10.1101/2020.05.15.098731

Chen C, Huang J, Cheng Z, et al. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. MedRxiv 2020 [Epub ahead of print]. https://doi.org/10.1101/2020.03.17.20037432. DOI: https://doi.org/10.1101/2020.03.17.20037432

Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engine Beijing 2020 [Epub ahead of print]. https://doi:10.1016/j.eng.2020.03.007. DOI: https://doi.org/10.1016/j.eng.2020.03.007

Chinello P, Petrosillo N, Pittalis S, et al. QTc interval prolongation during favipiravir therapy in an Ebolavirus-infected patient. PLoS Negl Trop Dis 2017;11:e0006034. DOI: https://doi.org/10.1371/journal.pntd.0006034

de Salvi Guimarães F, de Moraes WM, Bozi LH, et al. Dexamethasone-induced cardiac deterioration is associated with both calcium handling abnormalities and calcineurin signaling pathway activation. Mol Cell Biochem 2017;424:87-98. DOI: https://doi.org/10.1007/s11010-016-2846-3

Bacchiega BC, Bacchiega AB, Usnayo MJ, et al. Interleukin 6 inhibition and coronary artery disease in a high-risk population: a prospective community-based clinical study. J Am Heart Assoc 2017;6:e005038. DOI: https://doi.org/10.1161/JAHA.116.005038

Lee DH, Folsom AR, Harnack L, et al. Does supplemental vitamin C increase cardiovascular disease risk in women with diabetes? Am J Clin Nutr 2004;80:1194-200. DOI: https://doi.org/10.1093/ajcn/80.5.1194

Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 COVID-19. outbreak - an update on the status. Mil Med Res 2020;7:11.

Biran N, Ip A, Ahn J, et al. Tocilizumab among patients with COVID-19 in the intensive care unit: a multicentre observational study. Lancet Rheumatol 2020;2:e603-12. DOI: https://doi.org/10.1016/S2665-9913(20)30277-0

Castagné B, Viprey M, Martin J, et al. Cardiovascular safety of tocilizumab: A systematic review and network meta-analysis. PLoS One 2019;14:e0220178. DOI: https://doi.org/10.1371/journal.pone.0220178

Ikonomidis I, Pavlidis G, Katsimbri P, et al. Tocilizumab improves oxidative stress and endothelial glycocalyx: A mechanism that may explain the effects of biological treatment on COVID-19. Food Chem Toxicol 2020;145:111694. DOI: https://doi.org/10.1016/j.fct.2020.111694

Sala V, Della Sala A, Hirsch E, Ghigo A. Signaling pathways underlying anthracycline cardiotoxicity. Antioxid Redox Signal 2020;32:1098-114. DOI: https://doi.org/10.1089/ars.2020.8019

United States National Library of Medicine. Randomised Evaluation of COVID-19 Therapy RECOVERY. trial NCT04381936; 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04381936?cond=NCT04381936&draw=2&rank=1 Accessed: 16 November 2020.

RECOVERY Collaborative Group; Horby P, Lim WS, et al. Dexamethasone in hospitalized patients with COVID-19 - preliminary report. N Engl J Med 2020;NEJMoa2021436.

National Health Service NHS. England. COVID-19 therapy: corticosteroids including dexamethasone and hydrocortisone; 2020. Available from: https://www.england.nhs.uk/publication/COVID-19-therapy-corticosteroids-including-dexamethasone-and-hydrocortisone/ Accessed: 17 November 2020.

Bernal-Mizrachi C, Weng S, Feng C, et al. Dexamethasone induction of hypertension and diabetes is PPAR-alpha dependent in LDL receptor-null mice. Nat Med 2003;9:1069-75. DOI: https://doi.org/10.1038/nm898

Maxwell SR, Moots RJ, Kendall MJ. Corticosteroids: do they damage the cardiovascular system? Postgrad Med J 1994;70:863-70. DOI: https://doi.org/10.1136/pgmj.70.830.863

Sicard RE, Werner JC. Biochemical correlates of dexamethasone-induced relative cardiomegaly in neonatal rats. In vivo 1995;9:75-9.

Goodwin JE, Geller DS. Glucocorticoid-induced hypertension. Pediatr Nephrol 2012;27:1059-66. DOI: https://doi.org/10.1007/s00467-011-1928-4

Roy SG, De P, Mukherjee D, Chander V, et al. Excess of glucocorticoid induces cardiac dysfunction via activating angiotensin II pathway. Cell Physiol Biochem 2009;24:1-10. DOI: https://doi.org/10.1159/000227803

Souverein PC, Berard A, Van Staa TP, et al. Use of oral glucocorticoids and risk of cardiovascular and cerebrovascular disease in a population based case-control study. Heart 2004;90:859-65. DOI: https://doi.org/10.1136/hrt.2003.020180

Shaikh AY, Shih JA. Chemotherapy-induced cardiotoxicity. Curr Heart Fail Rep 2012;9:117-27. DOI: https://doi.org/10.1007/s11897-012-0083-y

Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344:783-92. DOI: https://doi.org/10.1056/NEJM200103153441101

Telli ML, Hunt SA, Carlson RW, Guardino AE. Trastuzumab-related cardiotoxicity: calling into question the concept of reversibility. J Clin Oncol 2007;25:3525-33. DOI: https://doi.org/10.1200/JCO.2007.11.0106

Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol 2009;53:2231-47. DOI: https://doi.org/10.1016/j.jacc.2009.02.050

Guglin M, Hartlage G, Reynolds C, et al. Trastuzumab-induced cardiomyopathy: not as benign as it looks? A retrospective study. J Card Fail 2009;15:651-7. DOI: https://doi.org/10.1016/j.cardfail.2009.04.011

Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 2002;20:1215-21. DOI: https://doi.org/10.1200/JCO.2002.20.5.1215

Guarneri V, Lenihan DJ, Valero V, et al. Long-term cardiac tolerability of trastuzumab in metastatic breast cancer: the M.D. Anderson Cancer Center experience. J Clin Oncol 2006;24:4107-15. DOI: https://doi.org/10.1200/JCO.2005.04.9551

Calistri L, Cordopatri C, Nardi C, et al. Sudden cardiac death in a patient with advanced hepatocellular carcinoma with good response to sorafenib treatment: A case report with literature analysis. Mol Clin Oncol 2017;6:389-96. DOI: https://doi.org/10.3892/mco.2017.1132

Ewer MS, Lippman SM. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol 2005;23:2900-2. DOI: https://doi.org/10.1200/JCO.2005.05.827

Vejpongsa P, Yeh ET. Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol 2014;64:938-45. DOI: https://doi.org/10.1016/j.jacc.2014.06.1167

Ewer MS, Ewer SM. Troponin I provides insight into cardiotoxicity and the anthracycline-trastuzumab interaction. J Clin Oncol 2010;28:3901-4. DOI: https://doi.org/10.1200/JCO.2010.30.6274

Valerio L, Pieruzzi L, Giani C, et al. Targeted therapy in thyroid cancer: state of the art. Clin Oncol R Coll Radiol 2017;29:316-24. DOI: https://doi.org/10.1016/j.clon.2017.02.009

Porta C, Procopio G, Cartenì G, et al. Sequential use of sorafenib and sunitinib in advanced renal-cell carcinoma RCC: an Italian multicentre retrospective analysis of 189 patient cases. BJU Int 2011;108:E250-E7. DOI: https://doi.org/10.1111/j.1464-410X.2011.10186.x

Ellis PM, Coakley N, Feld R, et al. Use of the epidermal growth factor receptor inhibitors gefitinib, erlotinib, afatinib, dacomitinib, and icotinib in the treatment of non-small-cell lung cancer: a systematic review. Curr Oncol 2015;22:e183-e215. DOI: https://doi.org/10.3747/co.22.2566

Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363:711-23. DOI: https://doi.org/10.1056/NEJMoa1003466

Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015;372:320-30. DOI: https://doi.org/10.1056/NEJMoa1412082

Gettinger SN, Horn L, Gandhi L, et al. Overall survival and long-term safety of nivolumab anti-programmed death 1 antibody, BMS-936558, ONO-4538. in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol 2015;33:2004-12. DOI: https://doi.org/10.1200/JCO.2014.58.3708

Orphanos GS, Ioannidis GN, Ardavanis AG. Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol 2009;48:964-70. DOI: https://doi.org/10.1080/02841860903229124

Heinzerling L, Ott PA, Hodi FS, et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunother Cancer 2016;4:50. DOI: https://doi.org/10.1186/s40425-016-0152-y

Kloth JS, Pagani A, Verboom MC, et al. Incidence and relevance of QTc-interval prolongation caused by tyrosine kinase inhibitors. Br J Cancer 2015;112:1011-6. DOI: https://doi.org/10.1038/bjc.2015.82

Asnani A, Manning A, Mansour M, et al. Management of atrial fibrillation in patients taking targeted cancer therapies. Cardiooncology 2017;3:2. DOI: https://doi.org/10.1186/s40959-017-0021-y

Teng AE, Share M, Hsu JJ, et al. Torsades de pointes with pseudo-T wave alternans during rociletinib therapy: A novel manifestation of a rare side effect. Heart Rhythm Case Rep 2018;4:490-3. DOI: https://doi.org/10.1016/j.hrcr.2018.07.011

Agarwal M, Thareja N, Benjamin M, et al. Tyrosine kinase inhibitor-induced hypertension. Curr Oncol Rep 2018;20:65. DOI: https://doi.org/10.1007/s11912-018-0708-8

Minoia C, Giannoccaro M, Iacobazzi A, et al. Antineoplastic drug-induced bradyarrhythmias. Expert Opin Drug Saf 2012;11:739-51. DOI: https://doi.org/10.1517/14740338.2012.705826

Spechbach H, Morel P, Lorenzini KI, et al. Reversible ventricular arrythmia induced by dasatinib. Clin Case Rep 2013;1:20-5. DOI: https://doi.org/10.1002/ccr3.5

Sueta D, Suyama K, Sueta A, et al. Lenvatinib, an oral multi-kinases inhibitor, -associated hypertension: potential role of vascular endothelial dysfunction. Atherosclerosis 2017;260:116-20. DOI: https://doi.org/10.1016/j.atherosclerosis.2017.03.039

Ghatalia P, Je Y, Kaymakcalan MD, et al. QTc interval prolongation with vascular endothelial growth factor receptor tyrosine kinase inhibitors. Br J Cancer 2015;112:296-305. DOI: https://doi.org/10.1038/bjc.2014.564

Watanabe H, Ichihara E, Kano H, et al. Congestive heart failure during osimertinib treatment for epidermal growth factor receptor EGFR(-mutant non-small cell lung cancer NSCLC). Intern Med 2017;56:2195-7. DOI: https://doi.org/10.2169/internalmedicine.8344-16

Maurea N, Spallarossa P, Cadeddu C, et al. A recommended practical approach to the management of target therapy and angiogenesis inhibitors cardiotoxicity: an opinion paper of the working group on drug cardiotoxicity and cardioprotection, Italian Society of Cardiology. J Cardiovasc Med Hagerstown 2016;17:S93-S104. DOI: https://doi.org/10.2459/JCM.0000000000000383

Tartarone A, Gallucci G, Lazzari C, et al. Crizotinib-induced cardiotoxicity: the importance of a proactive monitoring and management. Future Oncol 2015;11:2043-8. DOI: https://doi.org/10.2217/fon.15.47

Gettinger SN, Bazhenova LA, Langer CJ, et al. Activity and safety of brigatinib in ALK-rearranged non-small-cell lung cancer and other malignancies: a single-arm, open-label, phase 1/2 trial. Lancet Oncol 2016;17:1683-96. DOI: https://doi.org/10.1016/S1470-2045(16)30392-8

Lovly CM, Shaw AT. Molecular pathways: resistance to kinase inhibitors and implications for therapeutic strategies. Clin Cancer Res 2014;20:2249-56. DOI: https://doi.org/10.1158/1078-0432.CCR-13-1610

Wolchok JD, Hodi FS, Weber JS, et al. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann N Y Acad Sci 2013;1291:1-13. DOI: https://doi.org/10.1111/nyas.12180

Voskens CJ, Goldinger SM, Loquai C, et al. The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network. PLoS One 2013;8:e53745. DOI: https://doi.org/10.1371/journal.pone.0053745

Yun S, Vincelette ND, Mansour I, et al. Late onset ipilimumab-induced pericarditis and pericardial effusion: a rare but life threatening complication. Case Rep Oncol Med 2015;2015:794842. DOI: https://doi.org/10.1155/2015/794842

Geisler BP, Raad RA, Esaian D, et al. Apical ballooning and cardiomyopathy in a melanoma patient treated with ipilimumab: a case of takotsubo-like syndrome. J Immunother Cancer 2015;3:4. DOI: https://doi.org/10.1186/s40425-015-0048-2

Inayat F, Masab M, Gupta S, Ullah W. New drugs and new toxicities: pembrolizumab-induced myocarditis. BMJ Case Rep 2018;2018:bcr2017223252. DOI: https://doi.org/10.1136/bcr-2017-223252

Semper H, Muehlberg F, Schulz-Menger J, et al. Drug-induced myocarditis after nivolumab treatment in a patient with PDL1-negative squamous cell carcinoma of the lung. Lung Cancer 2016;99:117-9. DOI: https://doi.org/10.1016/j.lungcan.2016.06.025

Yang S, Asnani A. Cardiotoxicities associated with immune checkpoint inhibitors. Curr Probl Cancer 2018;42:422-32. DOI: https://doi.org/10.1016/j.currproblcancer.2018.07.002

Lancellotti P, Suter TM, López-Fernández T, et al. Cardio-Oncology Services: rationale, organization, and implementation. Eur Heart J 2019;40:1756-63. DOI: https://doi.org/10.1093/eurheartj/ehy453

Al-Shamsi HO, Alhazzani W, Alhuraiji A, et al. A practical approach to the management of cancer patients during the novel coronavirus disease 2019 (COVID-19) pandemic: An International Collaborative Group. Oncologist 2020;25:e936-e45. DOI: https://doi.org/10.1634/theoncologist.2020-0213

Straus SM, Kors JA, De Bruin ML, et al. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J Am Coll Cardiol 2006;47:362-7. DOI: https://doi.org/10.1016/j.jacc.2005.08.067

Zang J, Wu S, Tang L, et al. Incidence and risk of QTc interval prolongation among cancer patients treated with vandetanib: a systematic review and meta-analysis. PLoS One 2012;7:e30353. DOI: https://doi.org/10.1371/journal.pone.0030353

Suter TM, Procter M, van Veldhuisen DJ, et al. Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial. J Clin Oncol 2007;25:3859-65. DOI: https://doi.org/10.1200/JCO.2006.09.1611

Nousiainen, T, Jantunen E, Vanninen E, Hartikainen J. Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients. Br J Cancer 2002;86:1697-700. DOI: https://doi.org/10.1038/sj.bjc.6600346

Kumar S, Marfatia R, Tannenbaum S, et al. Doxorubicin-induced cardiomyopathy 17 years after chemotherapy. Tex Heart Inst J 2012;39:424-7.

Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments. Nat Rev Cardiol 2015;12:547-58. DOI: https://doi.org/10.1038/nrcardio.2015.65

Lipshultz SE, Alvarez JA, Scully RE. Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart 2008;94:525-33. DOI: https://doi.org/10.1136/hrt.2007.136093

Wojtacki J, Lewicka-Nowak E, Leśniewski-Kmak K. Anthracycline-induced cardiotoxicity: clinical course, risk factors, pathogenesis, detection and prevention--review of the literature. Med Sci Monit 2000;6:411-20.

Tassan-Mangina S, Codorean D, Metivier M, et al. Tissue Doppler imaging and conventional echocardiography after anthracycline treatment in adults: early and late alterations of left ventricular function during a prospective study. Eur J Echocardiogr 2006;7:141-6. DOI: https://doi.org/10.1016/j.euje.2005.04.009

Tsai HR, Gjesdal O, Wethal T, et al. Left ventricular function assessed by two-dimensional speckle tracking echocardiography in long-term survivors of Hodgkin's lymphoma treated by mediastinal radiotherapy with or without anthracycline therapy. Am J Cardiol 2011;107:472-7. DOI: https://doi.org/10.1016/j.amjcard.2010.09.048

Doctor-approved patient information from American Society of Clinical Oncology (ASCO). Childhood Cancer: Statistics; 2020. Available from: https://www.cancer.net/cancer-types/childhood-cancer/statistics Accessed: 17 November 2020.

Lipshultz SE, Adams MJ, Colan SD, et al. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation 2013;128:1927-95. DOI: https://doi.org/10.1161/CIR.0b013e3182a88099

van der Pal HJ, van Dalen EC, Hauptmann M, et al. Cardiac function in 5-year survivors of childhood cancer: a long-term follow-up study. Arch Intern Med 2010;170:1247-55. DOI: https://doi.org/10.1001/archinternmed.2010.233

Riphagen S, Gomez X, Gonzalez-Martinez C, et al. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 2020;395:1607-8. DOI: https://doi.org/10.1016/S0140-6736(20)31094-1

Tay MZ, Poh CM, Rénia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020;20:363-74. DOI: https://doi.org/10.1038/s41577-020-0311-8

Domercant J, Polin N, Jahangir E. Cardio-oncology: a focused review of anthracycline-, human epidermal growth factor receptor 2 inhibitor-, and radiation-induced cardiotoxicity and management. Ochsner J 2016;16:250-6.

Hong RA, Iimura T, Sumida KN, Eager RM. Cardio-oncology/onco-cardiology. Clin Cardiol 2010;33:733-7. DOI: https://doi.org/10.1002/clc.20823

He Y, Thummuri D, Zheng G, et al. Cellular senescence and radiation-induced pulmonary fibrosis. Transl Res 2019;209:14-21. DOI: https://doi.org/10.1016/j.trsl.2019.03.006

Zamorano JL, Lancellotti P, Rodriguez Muñoz D, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology ESC. Eur Heart J 2016;37:2768-801. DOI: https://doi.org/10.1093/eurheartj/ehw211

Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2005;111:2605-10. DOI: https://doi.org/10.1161/CIRCULATIONAHA.104.510461

Karram T, Abbasi A, Keidar S, et al. Effects of spironolactone and eprosartan on cardiac remodeling and angiotensin-converting enzyme isoforms in rats with experimental heart failure. Am J Physiol Heart Circ Physiol 2005;289:1351-8. DOI: https://doi.org/10.1152/ajpheart.01186.2004

Ishiyama Y, Gallagher PE, Averill DB, et al. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension 2004;43:970-6. DOI: https://doi.org/10.1161/01.HYP.0000124667.34652.1a

Danser AHJ, Epstein M, Batlle D. Renin-angiotensin system blockers and the COVID-19 pandemic: at present there is no evidence to abandon renin-angiotensin system blockers. Hypertension 2020;75:1382-5. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.120.15082

European Society of Cardiology (ESC). Position statement of the ESC Council on hypertension on ACE-inhibitors and angiotensin receptor blockers; 13 March 2020. Available from: https://www.escardio.org/Councils/Council-on-Hypertension-CHT./News/position-statement-of-the-esc-council-on-hypertension-on-ace-inhibitors-and-ang Accessed: 5 August 2020.

International Society of Hypertension ISH.. A statement from the International Society of Hypertension on COVID-19; 2020. Available from: https://ish-world.com/news/a/A-statement-from-the-International-Society-of-Hypertension-on-COVID-19/ Accessed: 5 August 2020.

Grover A, Oberoi M. A systematic review and meta-analysis to evaluate the clinical outcomes in COVID-19 patients on angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. Eur Heart J Cardiovasc Pharmacother 2020;pvaa064. DOI: https://doi.org/10.1093/ehjcvp/pvaa064

European Society of Cardiology ESC. Council of Cardio-Oncology. Routine cardiotoxicity echo screening for chemotherapy patients during COVID-19; 2020. Available from: https://www.escardio.org/Councils/council-of-cardio-oncology/News/routine-cardiotoxicity-echo-screening-for-chemotherapy-patients-during-COVID-19 Accessed: 10 November 2020.

Barros-Gomes S, Herrmann J, Mulvagh SL, et al. Rationale for setting up a cardio-oncology unit: our experience at Mayo Clinic. Cardio-Oncology 2016;2:5. DOI: https://doi.org/10.1186/s40959-016-0014-2

Fradley MG, Brown AC, Shields B, et al. Developing a comprehensive cardio-oncology program at a Cancer Institute: The Moffitt Cancer Center Experience. Oncol Rev 2017;11:340. DOI: https://doi.org/10.4081/oncol.2017.340

Virani SA, Dent S, Brezden-Masley C, et al. Canadian Cardiovascular Society Guidelines for Evaluation and Management of Cardiovascular Complications of Cancer Therapy. Can J Cardiol 2016;32:831-41. DOI: https://doi.org/10.1016/j.cjca.2016.02.078

López-Fernández T, García AM, Beltrán AS, et al. Cardio-Onco-Hematology in Clinical Practice. Position Paper and Recommendations. Rev Esp Cardiol Engl (Ed). 2017;70:474-86. DOI: https://doi.org/10.1016/j.recesp.2016.12.021

Jenkins C, Bricknell K, Hanekom L, Marwick TH. Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol 2004;44:878-86. DOI: https://doi.org/10.1016/j.jacc.2004.05.050

Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart. 2014;100:1673-80. DOI: https://doi.org/10.1136/heartjnl-2014-305538

Published
2021-02-26
Info
Issue
Section
Reviews
Keywords:
COVID-19, cardiotoxicity, cardio-oncology, cancer, management.
Statistics
  • Abstract views: 718

  • PDF: 231
  • HTML: 0
How to Cite
Kobat, H., Elkonaissi, I., Dorak, M. T., & Nabhani-Gebara, S. (2021). Management of COVID-19 in cancer patients receiving cardiotoxic anti-cancer therapy. Future recommendations for cardio-oncology. Oncology Reviews, 15(1). https://doi.org/10.4081/oncol.2021.510