Pre-clinical modelling of rectal cancer to develop novel radiotherapy-based treatment strategies

Abstract

Pre-operative chemoradiotherapy reduces local recurrence rates in locally advanced rectal cancer. 10-20% of patients undergo complete response to chemoradiotherapy, however, many patients show no response. The mechanisms underlying this are poorly understood; identifying molecular and immunological factors underpinning heterogeneous responses to chemoradiotherapy, will promote development of treatment strategies to improve responses and overcome resistance mechanisms. This review describes the advances made in pre-clinical modelling of colorectal cancer, including genetically engineered mouse models, transplantation models, patient derived organoids and radiotherapy platforms to study responses to chemoradiotherapy. Relevant literature was identified through the PubMed and MEDLINE databases, using the following keywords: rectal cancer; mouse models; organoids; neo-adjuvant treatment; radiotherapy; chemotherapy. By delineating the advantages and disadvantages of available models, we discuss how modelling techniques can be utilized to address current research priorities in locally advanced rectal cancer. We provide unique insight into the potential application of pre-clinical models in the development of novel neo-adjuvant treatment strategies, which will hopefully guide future clinical trials.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Heald RJ, Ryall RD. Recurrence and survival after total mesorectal excision for rectal cancer. Lancet 1986;1:1479-82. DOI: https://doi.org/10.1016/S0140-6736(86)91510-2

NICE (National Institute for Health and Care Excellence). Colorectal cancer [NG 151]. Published: 2020. Available from: https://www.nice.org.uk/guidance/ng151

Glynne-Jones R, Wyrwicz L, Tiret E, et al. Rectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Published: 2018. Available from: https://www.esmo.org/guidelines DOI: https://doi.org/10.1093/annonc/mdy161

Kapiteijn E, Marijnen CA, Nagtegaal ID, et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med 2001;345:638-46. DOI: https://doi.org/10.1056/NEJMoa010580

Sebag-Montefiore D, Stephens RJ, Steele R, et al. Preoperative radiotherapy versus selective postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): a multicentre, randomised trial. Lancet 2009;373:811-20. DOI: https://doi.org/10.1016/S0140-6736(09)60484-0

Sauer R, Becker H, Hohenberger W, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 2004;351:1731-40. DOI: https://doi.org/10.1056/NEJMoa040694

Ngan SY, Burmeister B, Fisher RJ, et al. Randomized trial of short-course radiotherapy versus long-course chemoradiation comparing rates of local recurrence in patients with T3 rectal cancer: trans-Tasman radiation oncology group trial 01.04. J Clin Oncol 2012;31:3827-33. DOI: https://doi.org/10.1200/JCO.2012.42.9597

van Gijn W, Marijnen CA, Nagtegaal ID, et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol 2011;12:575-82. DOI: https://doi.org/10.1016/S1470-2045(11)70097-3

Sauer R, Liersch T, Merkel S, et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol 2012;30:1926-33. DOI: https://doi.org/10.1200/JCO.2011.40.1836

Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer. Lancet 2019;394:1467-80. DOI: https://doi.org/10.1016/S0140-6736(19)32319-0

Habr-Gama A, Perez RO, Nadalin W, et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg 2004;240:711-17. DOI: https://doi.org/10.1097/01.sla.0000141194.27992.32

Renehan AG, Malcomson L, Emsley R, et al. Watch-and-wait approach versus surgical resection after chemoradiotherapy for patients with rectal cancer (the OnCoRe project): a propensity-score matched cohort analysis. Lancet Oncol 2016;17:174-83. DOI: https://doi.org/10.1016/S1470-2045(15)00467-2

Smith JJ, Strombom P, Chow OS, et al. Assessment of a watch-and-wait strategy for rectal cancer in patients with a complete response after neoadjuvant therapy. JAMA Oncol 2019;5:e185896. DOI: https://doi.org/10.1001/jamaoncol.2018.5896

Dattani M, Heald RJ, Goussous G, et al. Oncological and survival outcomes in watch and wait patients with a clinical complete response after neoadjuvant chemoradiotherapy for rectal cancer: a systematic review and pooled analysis. Ann Surg 2018;268:955-67. DOI: https://doi.org/10.1097/SLA.0000000000002761

Bernier L, Balyasnikova S, Tait D, Brown G. Watch-and-wait as a therapeutic strategy in rectal cancer. Curr Colorectal Cancer Rep 2018;14:37-55. DOI: https://doi.org/10.1007/s11888-018-0398-5

van der Valk MJM, Hilling DE, Bastiaannet E, et al. Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the international watch & wait database (IWWD): an international multicentre registry study. Lancet 2018;391:2537-45. DOI: https://doi.org/10.1016/S0140-6736(18)31078-X

Petrelli F, Trevisan F, Cabiddu M, et al. Total neoadjuvant therapy in rectal cancer: a systematic review and meta-analysis of treatment outcomes. Ann Surg 2020;271:440-8. DOI: https://doi.org/10.1097/SLA.0000000000003471

Cercek A, Roxburgh CSD, Strombom P, et al. Adoption of total neoadjuvant therapy for locally advanced rectal cancer. JAMA Oncol 2018;4:e180071. DOI: https://doi.org/10.1001/jamaoncol.2018.0071

2017 European Society of Coloproctology (ESCP) collaborating group. Evaluating the incidence of pathological complete response in current international rectal cancer practice: the barriers to widespread safe deferral of surgery. Colorectal Dis 2018;20:58-68. DOI: https://doi.org/10.1111/codi.14361

Ryan JE, Warrier SK, Lynch AC, et al. Predicting pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review. Colorectal Dis 2016;18:234-46. DOI: https://doi.org/10.1111/codi.13207

Romesser PB, Kim AS, Jeong J, et al. Preclinical murine platform to evaluate therapeutic countermeasures against radiation-induced gastrointestinal syndrome. Proc Natl Acad Sci U S A 2019;116:20672‐8. DOI: https://doi.org/10.1073/pnas.1906611116

Metcalfe C, Kljavin NM, Ybarra R, de Sauvage FJ. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 2014;14:149-59. DOI: https://doi.org/10.1016/j.stem.2013.11.008

Verhaegen F, Granton P, Tryggestad E. Small animal radiotherapy research platforms. Phys Med Biol 2011;56:55-83. DOI: https://doi.org/10.1088/0031-9155/56/12/R01

Ghita M, McMahon SJ, Thompson HF, et al. Small field dosimetry for the small animal radiotherapy research platform (SARRP). Radiat Oncol 2017;12:204. DOI: https://doi.org/10.1186/s13014-017-0936-3

Rutherford A, Stevenson K, Tulk A, Chalmers AJ. Evaluation of four different small animal radiation plans on tumor and normal tissue dosimetry in a glioblastoma mouse model. Br J Radiol 2019;92:20180469. DOI: https://doi.org/10.1259/bjr.20180469

Du S, Lockamy V, Zhou L, et al. Stereotactic body radiation therapy delivery in a genetically engineered mouse model of lung cancer. Int J Radiat Oncol Biol Phys 2016;96:529-37. DOI: https://doi.org/10.1016/j.ijrobp.2016.07.008

Grapin M, Richard C, Limagne E, et al. Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: a promising new combination. J Immunother Cancer 2019;7:160. DOI: https://doi.org/10.1186/s40425-019-0634-9

Becker C, Fantini MC, Wirtz S, et al. In vivo imaging of colitis and colon cancer development in mice using high resolution chromoendoscopy. Gut 2005;54:950-54. DOI: https://doi.org/10.1136/gut.2004.061283

Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759-67. DOI: https://doi.org/10.1016/0092-8674(90)90186-I

Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 2009;361:2449-60. DOI: https://doi.org/10.1056/NEJMra0804588

Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 1990;247:322-4. DOI: https://doi.org/10.1126/science.2296722

Moser AR, Luongo C, Gould KA, et al. APCMin: a mouse model for intestinal and mammary tumorigenesis. Eur J Cancer 1995;31A:1061-4. DOI: https://doi.org/10.1016/0959-8049(95)00181-H

Sansom OJ, Reed KR, Hayes AJ, et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 2004;18:1385-90. DOI: https://doi.org/10.1101/gad.287404

Sansom OJ, Meniel V, Wilkins JA, et al. Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc Natl Acad Sci U S A 2006;103:14122-7. DOI: https://doi.org/10.1073/pnas.0604130103

Haigis KM, Kendall KR, Wang Y, et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet 2008;40:600-8. DOI: https://doi.org/10.1038/ng.115

Halberg RB, Katzung DS, Hoff PD, et al. Tumorigenesis in the multiple intestinal neoplasia mouse: redundancy of negative regulators and specificity of modifiers. Proc Natl Acad Sci U S A 2000;97:3461-6. DOI: https://doi.org/10.1073/pnas.97.7.3461

Hamamoto T, Beppu H, Okada H, et al. Compound disruption of smad2 accelerates malignant progression of intestinal tumors in apc knockout mice. Cancer Res 2002;62:5955-61.

Takaku K, Oshima M, Miyoshi H, et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 1998;92:645-56. DOI: https://doi.org/10.1016/S0092-8674(00)81132-0

Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 2007;50:113-30. DOI: https://doi.org/10.1111/j.1365-2559.2006.02549.x

Rad R, Cadiñanos J, Rad L, et al. A genetic progression model of Braf(V600E)-induced intestinal tumorigenesis reveals targets for therapeutic intervention. Cancer Cell 2013;24:15-29. DOI: https://doi.org/10.1016/j.ccr.2013.05.014

Nagy A. Cre recombinase: the universal reagent for genome tailoring. Genesis 2000;26:99-109. DOI: https://doi.org/10.1002/(SICI)1526-968X(200002)26:2<99::AID-GENE1>3.0.CO;2-B

Araki K, Imaizumi T, Okuyama K, et al. Efficiency of recombination by Cre transient expression in embryonic stem cells: comparison of various promoters. J Biochem 1997;122:977-82. DOI: https://doi.org/10.1093/oxfordjournals.jbchem.a021860

Shibata H, Toyama K, Shioya H, et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 1997;278:120-3. DOI: https://doi.org/10.1126/science.278.5335.120

Xue Y, Johnson R, Desmet M, et al. Generation of a transgenic mouse for colorectal cancer research with intestinal cre expression limited to the large intestine. Mol Cancer Res 2010;8:1095-104. DOI: https://doi.org/10.1158/1541-7786.MCR-10-0195

Feil S, Valtcheva N, Feil R. Inducible Cre Mice. Methods Mol Biol 2009;530:343-63. DOI: https://doi.org/10.1007/978-1-59745-471-1_18

el Marjou F, Janssen KP, Chang BH, et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 2004;39:186-93. DOI: https://doi.org/10.1002/gene.20042

Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816-21. DOI: https://doi.org/10.1126/science.1225829

Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014;157:1262-78. DOI: https://doi.org/10.1016/j.cell.2014.05.010

Yang H, Wang H, Jaenisch R. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 2014;9:1956-68. DOI: https://doi.org/10.1038/nprot.2014.134

Dow LE, O'Rourke KP, Simon J, et al. Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell 2015;161:1539-52. DOI: https://doi.org/10.1016/j.cell.2015.05.033

Boutin AT, Liao WT, Wang M, et al. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes Dev 2017;31:370-82. DOI: https://doi.org/10.1101/gad.293449.116

Davies EJ, Marsh Durban V, Meniel V, et al. PTEN loss and KRAS activation leads to the formation of serrated adenomas and metastatic carcinoma in the mouse intestine. J Pathol 2014;233:27-38. DOI: https://doi.org/10.1002/path.4312

Jackstadt R, Van Hooff SR, Leach JD, et al. Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell 2019;36:319-36. DOI: https://doi.org/10.1016/j.ccell.2019.08.003

Hinoi T, Akyol A, Theisen BK, et al. Mouse model of colonic adenoma-carcinoma progression cased on somatic Apc inactivation. Cancer Res 2007;67:9721-30. DOI: https://doi.org/10.1158/0008-5472.CAN-07-2735

Golovko D, Kedrin D, Yilmaz ÖH, Roper J. Colorectal cancer models for novel drug discovery. Expert Opin Drug Discov 2015;10:1217‐29. DOI: https://doi.org/10.1517/17460441.2015.1079618

Jackstadt R, Sansom OJ. Mouse models of intestinal cancer. J Pathol 2016;238:141‐51. DOI: https://doi.org/10.1002/path.4645

Stastna M, Janeckova L, Hrckulak D, et al. Human colorectal cancer from the perspective of mouse models. Genes (Basel) 2019;10:788. DOI: https://doi.org/10.3390/genes10100788

Fidler IJ. Orthotopic implantation of human colon carcinomas into nude mice provides a valuable model for the biology and therapy of metastasis. Cancer Metast Rev 1991;10:229-43. DOI: https://doi.org/10.1007/BF00050794

Kashtan H, Rabau M, Mullen JB, et al. Intra-rectal injection of tumor cells: a novel animal model of rectal cancer. Surg Oncol 1991;1:251-6. DOI: https://doi.org/10.1016/0960-7404(92)90072-S

Donigan M, Norcross LS, Aversa J, et al. Novel murine model for colon cancer: non-operative trans-anal rectal injection. J Surg Res 2009;154:299-303. DOI: https://doi.org/10.1016/j.jss.2008.05.028

Takahashi T, Morotomi M, Nomoto K. A novel mouse model of rectal cancer established by orthotopic implantation of colon cancer cells. Cancer Sci 2004;95:514-9. DOI: https://doi.org/10.1111/j.1349-7006.2004.tb03242.x

Enquist IB, Good Z, Jubb AM, et al. Lymph node-independent liver metastasis in a model of metastatic colorectal cancer. Nat Commun 2014;5:3530. DOI: https://doi.org/10.1038/ncomms4530

Hynds RE, Vladimirou E, Janes SM. The secret lives of cancer cell lines. Dis Model Mech 2018;11:dmm037366. DOI: https://doi.org/10.1242/dmm.037366

Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 2011;141:1762-72. DOI: https://doi.org/10.1053/j.gastro.2011.07.050

Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultures human intestinal stem cells. Nature 2015;521:43-7. DOI: https://doi.org/10.1038/nature14415

Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 2015;21:256-62. DOI: https://doi.org/10.1038/nm.3802

de Sousa e Melo F, Kurtova AV, Harnoss JM, et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature 2017;543:676-80. DOI: https://doi.org/10.1038/nature21713

Fumagalli A, Drost J, Suijkerbuijk SJ, et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc Natl Acad Sci U S A 2017;114:2357-64. DOI: https://doi.org/10.1073/pnas.1701219114

Tauriello DVF, Palomo-Ponce S, Stork D, et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018;554:538-43. DOI: https://doi.org/10.1038/nature25492

O'Rourke KP, Loizou E, Livshits G, et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat Biotechnol 2017;35:577-82. DOI: https://doi.org/10.1038/nbt.3837

Roper J, Tammela T, Cetinbas NM, et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat Biotechnol 2017;35:569-76. DOI: https://doi.org/10.1038/nbt.3836

Lannagan TRM, Lee YK, Wang T, et al. Genetic editing of colonic organoids provides a molecularly distinct and orthotopic preclinical model of serrated carcinogenesis. Gut 2019;68:684-92. DOI: https://doi.org/10.1136/gutjnl-2017-315920

Ganesh K, Wu C, O’Rourke KP, et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med 2019;25:1607-14. DOI: https://doi.org/10.1038/s41591-019-0584-2

Yao Y, Xu X, Yang L, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 2020;26:17-26. DOI: https://doi.org/10.1016/j.stem.2019.10.010

Dovedi SJ, Cheadle EJ, Popple AL, et al. Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and infiltrating polyclonal T-cell populations when combined with PD-1 Blockade. Clin Cancer Res 2017;23:5514-26. DOI: https://doi.org/10.1158/1078-0432.CCR-16-1673

Batlle E, Massague J. Transforming growth factor-β signaling in immunity and cancer. Immunity 2019;50:924-40. DOI: https://doi.org/10.1016/j.immuni.2019.03.024

Calon A, Lonardo E, Berenguer-Llergo A, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet 2015;47:320-9. DOI: https://doi.org/10.1038/ng.3225

Guinney R, Dienstmann X, Wang A, et al. The consensus molecular subtypes of colorectal cancer. Nat Med 2015; 21:1350-6. DOI: https://doi.org/10.1038/nm.3967

Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006;313:1960-4. DOI: https://doi.org/10.1126/science.1129139

Nakanishi Y, Duran A, L'Hermitte A, et al. Simultaneous loss of both atypical protein kinase C genes in the intestinal epithelium drives serrated intestinal cancer by impairing immunosurveillance. Immunity 2018;49:1132-47. DOI: https://doi.org/10.1016/j.immuni.2018.09.013

Vanpouille-Box C, Diamond JM, Pilones KA, et al. TGFβ is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 2015;75:2232-42. DOI: https://doi.org/10.1158/0008-5472.CAN-14-3511

Bouquet F, Pal A, Pilones KA, et al. TGFβ1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res 2011;17:6754-65. DOI: https://doi.org/10.1158/1078-0432.CCR-11-0544

Rodríguez-Ruiz ME, Rodríguez I, Mayorga L, et al. TGFβ blockade enhances radiotherapy abscopal efficacy effects in combination with anti-PD1 and anti-CD137 immunostimulatory monoclonal antibodies. Mol Cancer Ther 2019;18621-31. DOI: https://doi.org/10.1158/1535-7163.MCT-18-0558

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69:7-34. DOI: https://doi.org/10.3322/caac.21551

Published
2021-06-18
Info
Issue
Section
Reviews
Keywords:
Rectal cancer, mouse models, organoids, neo-adjuvant treatment, radiotherapy, chemotherapy.
Statistics
  • Abstract views: 2155

  • PDF: 80
  • HTML: 0
How to Cite
Gillespie, M. A., Steele, C. W., Lannagan, T. R., Sansom, O. J., & Roxburgh, C. S. (2021). Pre-clinical modelling of rectal cancer to develop novel radiotherapy-based treatment strategies. Oncology Reviews, 15(1). https://doi.org/10.4081/oncol.2021.511