The repair gene BACH1 - a potential oncogene

Abstract

BACH1 encodes for a protein that belongs to RecQ DEAH helicase family and interacts with the BRCT repeats of BRCA1. The N-terminus of BACH1 functions in DNA metabolism as DNA-dependent ATPase and helicase. The C-terminus consists of BRCT domain, which interacts with BRCA1 and this interaction is one of the major regulator of BACH1 function. BACH1 plays important roles both in phosphorylated as well as dephosphorylated state and functions in coordination with multiple signaling molecules. The active helicase property of BACH1 is maintained by its dephosphorylated state. Imbalance between these two states enhances the development and progression of the diseased condition. Currently BACH1 is known as a tumor suppressor gene based on the presence of its clinically relevant mutations in different cancers. Through this review we have justified it to be named as an oncogene. In this review, we have explained the mechanism of how BACH1 in collaboration with BRCA1 or independently regulates various pathways like cell cycle progression, DNA replication during both normal and stressed situation, recombination and repair of damaged DNA, chromatin remodeling and epigenetic modifications. Mutation and overexpression of BACH1 are significantly found in different cancer types. This review enlists the molecular players which interact with BACH1 to regulate DNA metabolic functions, thereby revealing its potential for cancer therapeutics. We have identified the most mutated functional domain of BACH1, the hot spot for tumorigenesis, justifying it as a target molecule in different cancer types for therapeutics. BACH1 has high potentials of transforming a normal cell into a tumor cell if compromised under certain circumstances. Thus, through this review, we justify BACH1 as an oncogene along with the existing role of being a tumor suppressant.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Cantor SB, Bell DW, Ganesan S, et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 2001;105:149-60. DOI: https://doi.org/10.1016/S0092-8674(01)00304-X

Hall JM, Lee MK, Newman BM, et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 1990;250:1684-9. DOI: https://doi.org/10.1126/science.2270482

Hirota Y, Lahti JM. Characterization of the enzymatic activity of hChlR1, a novel human DNA helicase. Nucleic Acids Res 2000;28:917-24. DOI: https://doi.org/10.1093/nar/28.4.917

Cantor S, Drapkin R, Zhang F, et al. The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. PNAS 2004;101:2357-62. DOI: https://doi.org/10.1073/pnas.0308717101

Levran O, Attwooll C, Henry RT, et al. The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet 2005;37:931-3. DOI: https://doi.org/10.1038/ng1624

Kumaraswamy E, Shiekhattar R. Activation of BRCA1/BRCA2-associated helicase BACH1 is required for timely progression through S phase. Mol Cell Biol 2007;27:6733-41. DOI: https://doi.org/10.1128/MCB.00961-07

Brosh Jr RM. DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer 2013;13:542-58. DOI: https://doi.org/10.1038/nrc3560

Gong Z, Kim JE, Leung CC, et al. BACH1/FANCJ acts with TopBP1 and participates early in DNA replication checkpoint control. Mol Cell 2010;37:438-46. DOI: https://doi.org/10.1016/j.molcel.2010.01.002

Peng M, Litman R, Jin Z, et al. BACH1 is a DNA repair protein supporting BRCA1 damage response. Oncogene 2006;25:2245-53. DOI: https://doi.org/10.1038/sj.onc.1209257

Cantor SB, Xie J. Assessing the link between BACH1/FANCJ and MLH1 in DNA crosslink repair. Environ Mol Mutagen 2010;51:500-7. DOI: https://doi.org/10.1002/em.20568

Brosh Jr RM, Cantor SB. Molecular and cellular functions of the FANCJ DNA helicase defective in cancer and in Fanconi anemia. Front Genet 2014;5:372-14. DOI: https://doi.org/10.3389/fgene.2014.00372

Sarkies P, Murat P, Phillips LG, et al. FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res 2012;40:1485-98. DOI: https://doi.org/10.1093/nar/gkr868

Wu CG, Spies M. G-quadruplex recognition and remodeling by the FANCJ helicase. Nucleic Acids Res 2016;44:8742-53. DOI: https://doi.org/10.1093/nar/gkw574

Schwab RA, Nieminuszczy J, Shin-ya K, Niedzwiedz W. FANCJ couples replication past natural fork barriers with maintenance of chromatin structure. J. Cell Biol 2013;201:33-48. DOI: https://doi.org/10.1083/jcb.201208009

Varizhuk A, Isaakova E, Pozmogova G. DNA G‐quadruplexes (g4s) modulate epigenetic (Re) programming and chromatin remodeling. BioEssays 2019;41:1900091-101. DOI: https://doi.org/10.1002/bies.201900091

Inoue A, Hyle J, Lechner MS, Lahti JM. Mammalian ChlR1 has a role in heterochromatin organization. Exp Cell Res 2011;317:2522-35. DOI: https://doi.org/10.1016/j.yexcr.2011.08.006

Wu Y, Brosh Jr RM. FANCJ helicase operates in the Fanconi Anemia DNA repair pathway and the response to replicational stress. Curr Mol Med 2009;9:470-82. DOI: https://doi.org/10.2174/156652409788167159

Alter BP. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Am J Hematol 2007;2007:29-39. DOI: https://doi.org/10.1182/asheducation-2007.1.29

Seal S, Thompson D, Renwick A, et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 2006;38:1239-41. DOI: https://doi.org/10.1038/ng1902

Oussalah A, Avogbe PH, Guyot E, et al. BRIP1 coding variants are associated with a high risk of hepatocellular carcinoma occurrence in patients with HCV-or HBV-related liver disease. Oncotarget 2017;8:62842-57. DOI: https://doi.org/10.18632/oncotarget.11327

Peng M, Litman R, Xie J, et al. The FANCJ/MutLα interaction is required for correction of the cross‐link response in FA‐J cells. EMBO J 2007;26:3238-49. DOI: https://doi.org/10.1038/sj.emboj.7601754

Williams SA, Wilson JB, Clark AP, et al. Functional and physical interaction between the mismatch repair and FA-BRCA pathways. Hum Mol Genet 2011;20:4395-410. DOI: https://doi.org/10.1093/hmg/ddr366

Yeom G, Kim J, Park CJ. Investigation of the core binding regions of human Werner syndrome and Fanconi anemia group J helicases on replication protein A. Sci Rep 2019;9:1-10. DOI: https://doi.org/10.1038/s41598-019-50502-8

Estep KN, Brosh Jr RM. RecQ and Fe-S helicases have unique roles in DNA metabolism dictated by their unwinding directionality, substrate specificity, and protein interactions. Biochem Soc Trans 2018;46:77-95. DOI: https://doi.org/10.1042/BST20170044

Awate S, Brosh Jr RM. Interactive roles of DNA helicases and translocases with the single-stranded DNA binding protein RPA in nucleic acid metabolism. Int J Mol Sci 2017;18:1-25. DOI: https://doi.org/10.3390/ijms18061233

Dhar S, Brosh RM. BLM’s balancing act and the involvement of FANCJ in DNA repair. Cell Cycle 2018;17:2207-20. DOI: https://doi.org/10.1080/15384101.2018.1520567

Yu X, Chini CC, He M, et al. The BRCT domain is a phospho-protein binding domain. Science 2003;302:639-42. DOI: https://doi.org/10.1126/science.1088753

Wu W, Togashi Y, Johmura Y, et al. HP1 regulates the localization of FANCJ at sites of DNA double‐strand breaks. CANCER Sci 2016;107:1406-15. DOI: https://doi.org/10.1111/cas.13008

Yarden RI, Pardo-Reoyo S, Sgagias M, et al. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 2002;30:285-9. DOI: https://doi.org/10.1038/ng837

Greenberg RA, Sobhian B, Pathania S, et al. Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev 2006;20:34-46. DOI: https://doi.org/10.1101/gad.1381306

Suhasini AN, Sommers JA, Muniandy PA, et al. Fanconi anemia group J helicase and MRE11 nuclease interact to facilitate the DNA damage response. Mol Cell Biol 2013;33:2212-27. DOI: https://doi.org/10.1128/MCB.01256-12

Shakya R, Reid LJ, Reczek CR, et al. BRCA1 tumor suppression depends on BRCT phosphoprotein binding, but not its E3 ligase activity. Science 2011;334:525-8. DOI: https://doi.org/10.1126/science.1209909

Zhang X, Guo J, Wei X, et al. Bach1: function, regulation, and involvement in disease. Oxid Med Cell Longev 2018;1-8. DOI: https://doi.org/10.1155/2018/1347969

Atkinson J, McGlynn P. Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res 2009;37:3475-92. DOI: https://doi.org/10.1093/nar/gkp244

Wu Y, Shin-ya K, Brosh RM. FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol 2008;28:4116-28. DOI: https://doi.org/10.1128/MCB.02210-07

Wu W, Rokutanda N, Takeuchi J, et al. HERC2 facilitates BLM and WRN helicase complex interaction with RPA to suppress G-quadruplex DNA. Cancer Res 2018;78:6371-85. DOI: https://doi.org/10.1158/0008-5472.CAN-18-1877

Cantor SB, Nayak S. FANCJ at the FORK. Mutat Res 2016;788:7-11. DOI: https://doi.org/10.1016/j.mrfmmm.2016.02.003

Gupta R, Sharma S, Sommers JA, et al. Analysis of the DNA substrate specificity of the human BACH1 helicase associated with breast cancer. J Biol Chem 2005;280:25450-60. DOI: https://doi.org/10.1074/jbc.M501995200

Gupta R, Sharma S, Sommers JA, et al. FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein. Blood 2007;110:2390-8. DOI: https://doi.org/10.1182/blood-2006-11-057273

Sommers JA, Banerjee T, Hinds T, et al. Novel function of the Fanconi anemia group J or RECQ1 helicase to disrupt protein-DNA complexes in a replication protein A-stimulated manner. J Biol Chem 2014;289:19928-41. DOI: https://doi.org/10.1074/jbc.M113.542456

Schwartz MF, Duong JK, Sun Z, et al. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Mol Cell 2002;9:1055-65. DOI: https://doi.org/10.1016/S1097-2765(02)00532-4

Xie J, Litman R, Wang S, Peng M, et al. Targeting the FANCJ-BRCA1 interaction promotes a switch from recombination to polη-dependent bypass. Oncogene 2010;29:2499-508. DOI: https://doi.org/10.1038/onc.2010.18

Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining. Transl. Cancer Res. 2013;2:130-43.

Xie J, Peng M, Guillemette S, et al. FANCJ/BACH1 acetylation at lysine 1249 regulates the DNA damage response. PLoS Genet 2012;8:1-14. DOI: https://doi.org/10.1371/journal.pgen.1002786

Savage KI, Harkin DP. BRCA1, a ‘complex’protein involved in the maintenance of genomic stability. The FEBS J 2015;282:630-46. DOI: https://doi.org/10.1111/febs.13150

Dohrn L, Salles D, Siehler SY, et al. BRCA1-mediated repression of mutagenic end-joining of DNA double-strand breaks requires complex formation with BACH1. Biochem J 2012;441:919-28. DOI: https://doi.org/10.1042/BJ20110314

Wang X, Lui VC, Poon RT, et al. DNA damage mediated S and G2 checkpoints in human embryonal carcinoma cells. Stem Cells 2009;27:568-76. DOI: https://doi.org/10.1634/stemcells.2008-0690

Willis N, Rhind N. Regulation of DNA replication by the S-phase DNA damage checkpoint. Cell Division 2009;4:1-10. DOI: https://doi.org/10.1186/1747-1028-4-13

Yu X, Baer R. Nuclear localization and cell cycle-specific expression of CtIP, a protein that associates with the BRCA1 tumor suppressor. J Biol Chem 2000;275:18541-9. DOI: https://doi.org/10.1074/jbc.M909494199

Anand R, Ranjha L, Cannavo E, Cejka P. Phosphorylated CtIP functions as a co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection. Mol Cell 2016;64:940-50. DOI: https://doi.org/10.1016/j.molcel.2016.10.017

Wang H, Li Y, Truong LN, et al. CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity. Mol Cell 2014;54:1012-21. DOI: https://doi.org/10.1016/j.molcel.2014.04.012

Peng M, Xie J, Ucher A, et al. Crosstalk between BRCA‐F anconi anemia and mismatch repair pathways prevents MSH 2‐dependent aberrant DNA damage responses. The EMBO J 2014;33:1698-712. DOI: https://doi.org/10.15252/embj.201387530

House N, Koch MR, Freudenreich CH. Chromatin modifications and DNA repair: beyond double-strand breaks. Front Genet 2014;5:1-18. DOI: https://doi.org/10.3389/fgene.2014.00296

Lai W, Li H, Liu S, Tao Y. Connecting chromatin modifying factors to DNA damage response. Int J Mol Sci 2013;14:2355-69. DOI: https://doi.org/10.3390/ijms14022355

Osley MA, Shen X. Altering nucleosomes during DNA double-strand break repair in yeast. Trends Genet 2006;22:671-7. DOI: https://doi.org/10.1016/j.tig.2006.09.007

White MF. Structure, function and evolution of the XPD family of iron-sulfur-containing 5’–>3’ DNA helicases. Biochem Soc Trans 2009;37:547-51. DOI: https://doi.org/10.1042/BST0370547

Wolski SC, Kuper J, Hanzelmann P, et al. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol 2008;6:e149. DOI: https://doi.org/10.1371/journal.pbio.0060149

Fan L, Fuss JO, Cheng QJ, et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 2008;133:789-800. DOI: https://doi.org/10.1016/j.cell.2008.04.030

Liu H, Rudolf J, Johnson KA, et al. Structure of the DNA repair helicase XPD. Cell 2008;133:801-12. DOI: https://doi.org/10.1016/j.cell.2008.04.029

Wu W, Nishikawa H, Fukuda T, et al. Interaction of BARD1 and HP1 is required for BRCA1 retention at sites of DNA damage. Cancer Res 2015;75:1311-21. DOI: https://doi.org/10.1158/0008-5472.CAN-14-2796

Magaraki A, van der Heijden G, Sleddens-Linkels E, et al. Silencing markers are retained on pericentric heterochromatin during murine primordial germ cell development. Epigenetics Chromatin 2017;10:1-20. DOI: https://doi.org/10.1186/s13072-017-0119-3

Muramatsu D, Singh PB, Kimura H, et al. Pericentric heterochromatin generated by HP1 protein interaction-defective histone methyltransferase Suv39h1. J Biol Chem 2013;288:25285-96. DOI: https://doi.org/10.1074/jbc.M113.470724

Yi Q, Chen Q, Liang C, et al. HP 1 links centromeric heterochromatin to centromere cohesion in mammals. EMBO reports 2018;19:1-13. DOI: https://doi.org/10.15252/embr.201745484

Saksouk N, Simboeck E, Déjardin J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 2015;8:1-7. DOI: https://doi.org/10.1186/1756-8935-8-3

Yarden RI, Brody LC. BRCA1 interacts with components of the histone deacetylase complex. PNAS 1999;96:4983-8. DOI: https://doi.org/10.1073/pnas.96.9.4983

Groth A, Rocha W, Verreault A, Almouzni G. Chromatin challenges during DNA replication and repair. Cell 2007;128:721-33. DOI: https://doi.org/10.1016/j.cell.2007.01.030

Liu J, Kim J, Oberdoerffer P. Metabolic modulation of chromatin: implications for DNA repair and genomic integrity. Front Genet 2013;4:1-11. DOI: https://doi.org/10.3389/fgene.2013.00182

Kennedy SR, Zhang Y, Risques RA. Cancer-associated mutations but no cancer: insights into the early steps of carcinogenesis and implications for early cancer detection. Trends Cancer 2019;5:531-40. DOI: https://doi.org/10.1016/j.trecan.2019.07.007

Risques RA, Kennedy SR. Aging and the rise of somatic cancer-associated mutations in normal tissues. PLoS Genet 2018;14:1-12. DOI: https://doi.org/10.1371/journal.pgen.1007108

Tate JG, Bamford S, Jubb HC, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 2019;47:1-7. DOI: https://doi.org/10.1093/nar/gky1015

Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013;6:1-19. DOI: https://doi.org/10.1126/scisignal.2004088

Abbosh PH, Plimack ER. Molecular and clinical insights into the role and significance of mutated dna repair genes in bladder cancer. Bladder Cancer 2018;4:9-18. DOI: https://doi.org/10.3233/BLC-170129

Zou W, Ma X, Hua W, et al. BRIP1 inhibits the tumorigenic properties of cervical cancer by regulating RhoA GTPase activity. Oncol Lett 2015;11:551-8. DOI: https://doi.org/10.3892/ol.2015.3963

Guillemette S, Branagan A, Peng M, et al. FANCJ localization by mismatch repair is vital to maintain genomic integrity after UV irradiation. Cancer Res 2014;74:932-44. DOI: https://doi.org/10.1158/0008-5472.CAN-13-2474

Ali M, Delozier CD, Chaudhary U. BRIP-1 germline mutation and its role in colon cancer: presentation of two case reports and review of literature. BMC Med Genet 2019;20:1-5. DOI: https://doi.org/10.1186/s12881-019-0812-0

Karami F, Mehdipour P. A comprehensive focus on global spectrum of BRCA1 and BRCA2 mutations in breast cancer. Biomed Res Int 2013;1-21. DOI: https://doi.org/10.1155/2013/928562

Rebbeck TR, Mitra N, Domchek SM, et al. Modification of BRCA1-associated breast and ovarian cancer risk by BRCA1-interacting genes. Cancer Res 2011;71:5792-805. DOI: https://doi.org/10.1158/0008-5472.CAN-11-0773

Shi J, Tong J, Cai S, et al. Correlation of the BACH1 Pro919Ser polymorphism with breast cancer risk: A literature based meta analysis and meta regression analysis. Exp Ther Med 2013;6:435-44. DOI: https://doi.org/10.3892/etm.2013.1148

Yadav BS, Chanana P, Jhamb S. Biomarkers in triple negative breast cancer: a review. World J Clin Oncol 2015;6:252-63. DOI: https://doi.org/10.5306/wjco.v6.i6.252

Kim MC, Choi JE, Lee SJ, Bae YK. Coexistent loss of the expressions of BRCA1 and p53 predicts poor prognosis in triple-negative breast cancer. Ann Surg Oncol 2016;23:3524-30. DOI: https://doi.org/10.1245/s10434-016-5307-z

Saha J, Davis AJ. Unsolved mystery: the role of BRCA1 in DNA end-joining. J Radiat Res 2016;57:i18-i24. DOI: https://doi.org/10.1093/jrr/rrw032

Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002;23:687-96. DOI: https://doi.org/10.1093/carcin/23.5.687

Thangaraju M, Kaufmann SH, Couch FJ. BRCA1 facilitates stress-induced apoptosis in breast and ovarian cancer cell lines. J Biol Chem 2000;275:33487-96. DOI: https://doi.org/10.1074/jbc.M005824200

Biganzoli E, Coradini D, Ambrogi F, et al. P53 status identifies two subgroups of triple-negative breast cancers with distinct biological features. Jpn J Clin Oncol 2011;41:172-9. DOI: https://doi.org/10.1093/jjco/hyq227

Dumay A, Feugeas JP, Wittmer E, et al. Distinct tumor protein p53 mutants in breast cancer subgroups. Int J Cancer 2013;132:1227-31. DOI: https://doi.org/10.1002/ijc.27767

Eelen G, Bempt IV, Verlinden L, et al. Expression of the BRCA1-interacting protein Brip1/BACH1/FANCJ is driven by E2F and correlates with human breast cancer malignancy. Oncogene 2008;27:4233-41. DOI: https://doi.org/10.1038/onc.2008.51

Gupta I, Ouhtit A, Al-Ajmi A, et al. BRIP1 overexpression is correlated with clinical features and survival outcome of luminal breast cancer subtypes. Endocr Connect 2018;7:65-77. DOI: https://doi.org/10.1530/EC-17-0173

Chakraborty A, Katarkar A, Chaudhuri K, Mukhopadhyay A. Detection of a novel mutation in exon 20 of the BRCA1 gene. Cell Mol Biol Lett 2013;18:631-8. DOI: https://doi.org/10.2478/s11658-013-0110-3

Venkateshwari A, Clark DW, Nallari P, et al. BRIP1/FANCJ mutation analysis in a family with history of male and female breast Cancer in India. J Breast Cancer 2017;20:104-7. DOI: https://doi.org/10.4048/jbc.2017.20.1.104

Pabalan N, Jarjanazi H, Ozcelik H. Association between BRIP1 (BACH1) polymorphisms and breast cancer risk: a meta-analysis. Breast Cancer Res 2013;137:553-8. DOI: https://doi.org/10.1007/s10549-012-2364-2

De Nicolo A, Tancredi M, Lombardi G, et al. A novel breast cancer–associated BRIP1 (FANCJ/BACH1) germ-line mutation impairs protein stability and function. Clin Cancer Res 2008;14:4672-80. DOI: https://doi.org/10.1158/1078-0432.CCR-08-0087

Momenimovahed Z, Tiznobaik A, Taheri S, Salehiniya H. Ovarian cancer in the world: epidemiology and risk factors. Int J Womens Health 2019;11:287-99. DOI: https://doi.org/10.2147/IJWH.S197604

Moorman PG, Calingaert B, Palmieri RT, et al. Hormonal risk factors for ovarian cancer in premenopausal and postmenopausal women. Am J Epidemiol 2008;167:1059-69. DOI: https://doi.org/10.1093/aje/kwn006

Ness RB, Cramer DW, Goodman MT, et al. Infertility, fertility drugs, and ovarian cancer: a pooled analysis of case-control studies. Am J Epidemiol 2002;155:217-24. DOI: https://doi.org/10.1093/aje/155.3.217

Su KM, Wang PH, Yu MH, et al. The recent progress and therapy in endometriosis-associated ovarian cancer. J Chin Med Assoc 2020;83:227-32. DOI: https://doi.org/10.1097/JCMA.0000000000000262

Gee ME, Faraahi Z, McCormick A, Edmondson RJ. DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res 2018;11:1-12. DOI: https://doi.org/10.1186/s13048-018-0424-x

Chen CC, Feng W, Lim PX, et al. Homology-directed repair and the role of BRCA1, BRCA2, and related proteins in genome integrity and cancer. Annu Rev Cancer Biol 2018;2:313-36. DOI: https://doi.org/10.1146/annurev-cancerbio-030617-050502

Schildkraut JM, Iversen ES, Wilson MA, et al. Association between DNA damage response and repair genes and risk of invasive serous ovarian cancer. PLoS One 2010;5:1-9. DOI: https://doi.org/10.1371/journal.pone.0010061

Song H, Ramus SJ, Kjaer SK, et al. Tagging single nucleotide polymorphisms in the BRIP1 gene and susceptibility to breast and ovarian cancer. PLoS One 2007;2:1-7. DOI: https://doi.org/10.1371/journal.pone.0000268

Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108. DOI: https://doi.org/10.3322/caac.21262

Gao Y, Wang B, Gao S. BRD7 acts as a tumor suppressor gene in lung adenocarcinoma. PLoS One 2016;11:1-9. DOI: https://doi.org/10.1371/journal.pone.0156701

Waqar SN, Devarakonda SH, Michel LS, et al. BRCAness in non-small cell lung cancer (NSCLC). J Clin Oncol 2014;32:11033-. DOI: https://doi.org/10.1200/jco.2014.32.15_suppl.11033

Bartolucci R, Wei J, Sanchez JJ, et al. XPG mRNA expression levels modulate prognosis in resected non-small-cell lung cancer in conjunction with BRCA1 and ERCC1 expression. Clin Lung Cancer 2009;10:47-52. DOI: https://doi.org/10.3816/CLC.2009.n.007

Zhang J, Wang X, Lin CJ, et al. Altered expression of FANCL confers mitomycin C sensitivity in Calu-6 lung cancer cells. Cancer Biol Ther 2006;5:1632-6. DOI: https://doi.org/10.4161/cbt.5.12.3351

Jamal-Hanjani M, Wilson GA, Horswell S, et al. Detection of ubiquitous and heterogeneous mutations in cell-free DNA from patients with early-stage non-small-cell lung cancer. Ann Oncol 2016;27:862-7. DOI: https://doi.org/10.1093/annonc/mdw037

Haruki N, Saito H, Tatematsu Y, et al. Histological type-selective, tumor-predominant expression of a novel CHK1 isoform and infrequent in vivo somatic CHK2 mutation in small cell lung cancer. Cancer Res 2000;60:4689-92.

Marsit CJ, Liu M, Nelson HH, et al. Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene 2004;23:1000-4. DOI: https://doi.org/10.1038/sj.onc.1207256

Published
2021-07-02
Info
Issue
Section
Reviews
Keywords:
BACH1/BRIP1, genomic stability, tumorigenesis, Chromatin remodeling, Chl1p.
Statistics
  • Abstract views: 528

  • PDF: 45
  • HTML: 0
How to Cite
Muhseena N, K., Mathukkada, S., Das, S. P., & Laha, S. (2021). The repair gene <em>BACH1</em&gt; - a potential oncogene. Oncology Reviews, 15(1). https://doi.org/10.4081/oncol.2021.519