Adenomatous polyposis coli in cancer and therapeutic implications

Abstract

Inactivating mutations of the adenomatous polyposis coli (APC) gene and consequential upregulation of the Wnt signaling pathway are critical initiators in the development of colorectal cancer (CRC), the third most common cancer in the United States for both men and women. Emerging evidence suggests APC mutations are also found in gastric, breast and other cancers. The APC gene, located on chromosome 5q, is responsible for negatively regulating the β-catenin/Wnt pathway by creating a destruction complex with Axin/Axin2, GSK-3β, and CK1. In the event of an APC mutation, β-catenin accumulates, translocates to the cell nucleus and increases the transcription of Wnt target genes that have carcinogenic consequences in gastrointestinal epithelial stem cells. A literature review was conducted to highlight carcinogenesis related to APC mutations, as well as preclinical and clinical studies for potential therapies that target steps in inflammatory pathways, including IL-6 transduction, and Wnt pathway signaling regulation. Although a range of molecular targets have been explored in murine models, relatively few pharmacological agents have led to substantial increases in survival for patients with colorectal cancer clinically. This article reviews a range of molecular targets that may be efficacious targets for tumors with APC mutations.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Furuuchi K, Tada M, Yamada H, et al. Somatic mutations of the APC gene in primary breast cancers. Am J Pathol 2000;156:1997-2005. DOI: https://doi.org/10.1016/S0002-9440(10)65072-9

Oreffo VI, Robinson S, You M, et al. Decreased expression of the adenomatous polyposis coli (Apc) and mutated in colorectal cancer (Mcc) genes in mouse lung neoplasia. Mol Carcinogen 1998;21:37-49. DOI: https://doi.org/10.1002/(SICI)1098-2744(199801)21:1<37::AID-MC6>3.0.CO;2-M

Mori T, Nagase H, Horii A, et al. Germ‐line and somatic mutations of the APC gene in patients with Turcot syndrome and analysis of APC mutations in brain tumors. Genes Chromosomes Cancer 1994;9:168-72. DOI: https://doi.org/10.1002/gcc.2870090304

Fang D-C, Luo Y-H, Yang S-M, et al. Mutation analysis of APC gene in gastric cancer with microsatellite instability. World J Gastroenterol 2002;8:787. DOI: https://doi.org/10.3748/wjg.v8.i5.787

Rubinfeld B, Souza B, Albert I, et al. Association of the APC gene product with beta-catenin. Science 1993;262:1731-4. DOI: https://doi.org/10.1126/science.8259518

Munemitsu S, Albert I, Souza B, et al. Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci 1995;92:3046-50. DOI: https://doi.org/10.1073/pnas.92.7.3046

Su L-K, Vogelstein B, Kinzler KW. Association of the APC tumor suppressor protein with catenins. Science 1993;262:1734-7. DOI: https://doi.org/10.1126/science.8259519

Behrens J, Jerchow B-A, Würtele M, et al. Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 1998;280:596-9. DOI: https://doi.org/10.1126/science.280.5363.596

Ikeda S, Kishida S, Yamamoto H, et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK‐3β and β‐catenin and promotes GSK‐3β‐dependent phosphorylation of β‐catenin. The EMBO J 1998;17:1371-84. DOI: https://doi.org/10.1093/emboj/17.5.1371

Sakanaka C, Weiss JB, Williams LT. Bridging of β-catenin and glycogen synthase kinase-3β by axin and inhibition of β-catenin-mediated transcription. Proc Natl Acad Sci 1998;95:3020-3. DOI: https://doi.org/10.1073/pnas.95.6.3020

Sparks AB, Morin PJ, Vogelstein B, Kinzler KW. Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Res 1998;58:1130-4.

Rao CV, Yamada HY. Genomic instability and colon carcinogenesis: from the perspective of genes. Front Oncol 2013;3:130. DOI: https://doi.org/10.3389/fonc.2013.00130

Yamada Y, Jackson-Grusby L, Linhart H, et al. Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci 2005;102:13580-5. DOI: https://doi.org/10.1073/pnas.0506612102

Hiltunen MO, Alhonen L, Koistinaho J, et al. Hypermethylation of the APC (adenomatous polyposis coli) gene promoter region in human colorectal carcinoma. Int J Cancer 1997;70:644-8. DOI: https://doi.org/10.1002/(SICI)1097-0215(19970317)70:6<644::AID-IJC3>3.0.CO;2-V

Smits R, Ruiz P, Diaz-Cano S, et al. E-cadherin and adenomatous polyposis coli mutations are synergistic in intestinal tumor initiation in mice. Gastroenterology 2000;119:1045-53. DOI: https://doi.org/10.1053/gast.2000.18162

Chung DC. The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis. Gastroenterology 2000;119:854-65. DOI: https://doi.org/10.1053/gast.2000.16507

Smith G, Carey FA, Beattie J, et al. Mutations in APC, Kirsten-ras, and p53 - alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci 2002;99:9433-8. DOI: https://doi.org/10.1073/pnas.122612899

Kameyama H, Nagahashi M, Shimada Y, et al. Genomic characterization of colitis-associated colorectal cancer. World J Surg Oncol 2018;16:121. DOI: https://doi.org/10.1186/s12957-018-1428-0

Beaugerie L, Itzkowitz SH. Cancers complicating inflammatory bowel disease. N Engl J Med 2015;372:1441-52. DOI: https://doi.org/10.1056/NEJMra1403718

Beaugerie L, Svrcek M, Seksik P, et al. Risk of colorectal high-grade dysplasia and cancer in a prospective observational cohort of patients with inflammatory bowel disease. Gastroenterology 2013;145:166-75.e8. DOI: https://doi.org/10.1053/j.gastro.2013.03.044

Herrinton LJ, Liu L, Levin TR, et al. Incidence and mortality of colorectal adenocarcinoma in persons with inflammatory bowel disease from 1998 to 2010. Gastroenterology 2012;143:382-9. DOI: https://doi.org/10.1053/j.gastro.2012.04.054

Nishikawa M, Oshitani N, Matsumoto T, et al. Accumulation of mitochondrial DNA mutation with colorectal carcinogenesis in ulcerative colitis. Br J Cancer 2005;93:331-7. DOI: https://doi.org/10.1038/sj.bjc.6602664

Hsu CW, Sowers ML, Hsu W, et al. How does inflammation drive mutagenesis in colorectal cancer? Trends Cancer Res 2017;12:111.

Liu P-H, Wu K, Ng K, et al. Association of obesity with risk of early-onset colorectal cancer among women. JAMA Oncol 2019;5:37-44. DOI: https://doi.org/10.1001/jamaoncol.2018.4280

Bordonaro M, Lazarova D. Hypothesis: obesity is associated with a lower mutation threshold in Colon Cancer. J Cancer 2015;6:825. DOI: https://doi.org/10.7150/jca.12352

Stone TW, McPherson M, Darlington LG. Obesity and cancer: existing and new hypotheses for a causal connection. EBioMed 2018;30:14-28. DOI: https://doi.org/10.1016/j.ebiom.2018.02.022

Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology 2010;138:2044-58. DOI: https://doi.org/10.1053/j.gastro.2010.01.054

Laurent-Puig P, Béroud C, Soussi T. APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res 1998;26:269-70. DOI: https://doi.org/10.1093/nar/26.1.269

Galiatsatos P, Foulkes WD. Familial adenomatous polyposis. Am J Gastroenterol 2006;101:385-98. DOI: https://doi.org/10.1111/j.1572-0241.2006.00375.x

Tudyka VN, Clark SK. Surgical treatment in familial adenomatous polyposis. Ann Gastroenterol 2012;25:201.

Bisgaard ML, Fenger K, Bülow S, et al. Familial adenomatous polyposis (FAP): frequency, penetrance, and mutation rate. Hum Mutat 1994;3:121-5. DOI: https://doi.org/10.1002/humu.1380030206

Mori Y, Nagse H, Ando H, et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet 1992;1:229-33. DOI: https://doi.org/10.1093/hmg/1.4.229

Lamlum H, Ilyas M, Rowan A, et al. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's' two-hit'hypothesis. Nature Med 1999;5:1071-5. DOI: https://doi.org/10.1038/12511

Rowan A, Lamlum H, Ilyas M, et al. APC mutations in sporadic colorectal tumors: A mutational “hotspot” and interdependence of the “two hits”. Proc Natl Acad Sci 2000;97:3352-7. DOI: https://doi.org/10.1073/pnas.97.7.3352

Esplin ED, Snyder MP. Genomic era diagnosis and management of hereditary and sporadic colon cancer. World J Clin Oncol 2014;5:1036. DOI: https://doi.org/10.5306/wjco.v5.i5.1036

Spirio LN, Samowitz W, Robertson J, et al. Alleles of APC modulate the frequency and classes of mutations that lead to colon polyps. Nature Genet 1998;20:385-8. DOI: https://doi.org/10.1038/3865

Charifa A, Jamil RT, Zhang X. Gardner syndrome. StatPearls [Internet]; 2020.

Khattab A, Monga DK. Turcot syndrome. StatPearls [Internet]; 2020.

Paraf F, Jothy S, Van Meir E. Brain tumor-polyposis syndrome: two genetic diseases? J Clin Oncol 1997;15:2744-58. DOI: https://doi.org/10.1200/JCO.1997.15.7.2744

Kim MJ, Huang Y, Park J-I. Targeting wnt signaling for gastrointestinal cancer therapy: Present and evolving views. Cancers 2020;12:3638. DOI: https://doi.org/10.3390/cancers12123638

Andre T. Multicenter international study of oxaliplatin/5-fluorouracil/leukovorin in the adjuvant treatment of colon cancer (MOSAIC) investigators: oxaliplatin, fluorouracil and leukovorin as adjuvant treatment for colon cancer. N Engl J Med 2004;50:2243-51.

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69:7-34. DOI: https://doi.org/10.3322/caac.21551

Siegel RL, Torre LA, Soerjomataram I, et al. Global patterns and trends in colorectal cancer incidence in young adults. Gut 2019;68:2179-85. DOI: https://doi.org/10.1136/gutjnl-2019-319511

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020;70:7-30. DOI: https://doi.org/10.3322/caac.21590

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin 2021;71:7-33. DOI: https://doi.org/10.3322/caac.21654

Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci 2007;120:3327-35. DOI: https://doi.org/10.1242/jcs.03485

Midgley CA, White S, Howitt R, et al. APC expression in normal human tissues. J Pathol 1997;181:426-33. DOI: https://doi.org/10.1002/(SICI)1096-9896(199704)181:4<426::AID-PATH768>3.0.CO;2-T

Kielman MF, Rindapää M, Gaspar C, et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of β-catenin signaling. Nature Genet 2002;32:594-605. DOI: https://doi.org/10.1038/ng1045

Henderson BR, Fagotto F. The ins and outs of APC and β‐catenin nuclear transport. EMBO Rep 2002;3:834-9. DOI: https://doi.org/10.1093/embo-reports/kvf181

Rosin‐Arbesfeld R, Cliffe A, Brabletz T, Bienz M. Nuclear export of the APC tumour suppressor controls β‐catenin function in transcription. The EMBO J 2003;22:1101-13. DOI: https://doi.org/10.1093/emboj/cdg105

Hamada F, Bienz M. The APC tumor suppressor binds to C-terminal binding protein to divert nuclear β-catenin from TCF. Develop Cell 2004;7:677-85. DOI: https://doi.org/10.1016/j.devcel.2004.08.022

Fodde R, Edelmann W, Yang K, et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci 1994;91:8969-73. DOI: https://doi.org/10.1073/pnas.91.19.8969

Batlle E, Henderson JT, Beghtel H, et al. β-Catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 2002;111:251-63. DOI: https://doi.org/10.1016/S0092-8674(02)01015-2

Tetsu O, McCormick F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999;398:422-6. DOI: https://doi.org/10.1038/18884

He T-C, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science 1998;281:1509-12. DOI: https://doi.org/10.1126/science.281.5382.1509

Rubinfeld B, Albert I, Porfiri E, et al. Binding of GSK3β to the APC-β-catenin complex and regulation of complex assembly. Science 1996;272:1023-6. DOI: https://doi.org/10.1126/science.272.5264.1023

Kemler R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 1993;9:317-21. DOI: https://doi.org/10.1016/0168-9525(93)90250-L

Bienz M, Hamada F. Adenomatous polyposis coli proteins and cell adhesion. Curr Opin Cell Biol 2004;16:528-35. DOI: https://doi.org/10.1016/j.ceb.2004.08.001

Kawasaki Y, Sato R, Akiyama T. Mutated APC and Asef are involved in the migration of colorectal tumour cells. Nature Cell Biol 2003;5:211-5. DOI: https://doi.org/10.1038/ncb937

Watanabe T, Wang S, Noritake J, et al. Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Develop Cell 2004;7:871-83. DOI: https://doi.org/10.1016/j.devcel.2004.10.017

Wen Y, Eng CH, Schmoranzer J, et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nature Cell Biol 2004;6:820-30. DOI: https://doi.org/10.1038/ncb1160

Dikovskaya D, Khoudoli G, Newton IP, et al. The adenomatous polyposis coli protein contributes to normal compaction of mitotic chromatin. PLoS One 2012;7(6). DOI: https://doi.org/10.1371/journal.pone.0038102

Fodde R, Kuipers J, Rosenberg C, et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biol 2001;3:433-8. DOI: https://doi.org/10.1038/35070129

Alberici P, de Pater E, Cardoso J, et al. Aneuploidy arises at early stages of Apc-driven intestinal tumorigenesis and pinpoints conserved chromosomal loci of allelic imbalance between mouse and human. Am J Pathol 2007;170:377-87. DOI: https://doi.org/10.2353/ajpath.2007.060853

Wang Y, Azuma Y, Moore D, et al. Interaction between tumor suppressor adenomatous polyposis coli and topoisomerase IIα: implication for the G2/M transition. Mol Biol Cell 2008;19:4076-85. DOI: https://doi.org/10.1091/mbc.e07-12-1296

Heinen CD, Goss KH, Cornelius JR, et al. The APC tumor suppressor controls entry into S-phase through its ability to regulate the cyclin D/RB pathway. Gastroenterology 2002;123:751-63. DOI: https://doi.org/10.1053/gast.2002.35382

Jaiswal AS, Narayan S. A novel function of adenomatous polyposis coli (APC) in regulating DNA repair. Cancer Lett 2008;271:272-80. DOI: https://doi.org/10.1016/j.canlet.2008.06.024

Dimova DK, Dyson NJ. The E2F transcriptional network: old acquaintances with new faces. Oncogene 2005;24:2810-26. DOI: https://doi.org/10.1038/sj.onc.1208612

Ishidate T, Matsumine A, Toyoshima K, Akiyama T. The APC-hDLG complex negatively regulates cell cycle progression from the G0/G1 to S phase. Oncogene 2000;19:365-72. DOI: https://doi.org/10.1038/sj.onc.1203309

Bhattacharjee RN, Hamada F, Toyoshima K, Akiyama T. The tumor suppressor gene product APC is hyperphosphorylated during the M phase. Biochem Biophys Res Commun 1996;220:192-5. DOI: https://doi.org/10.1006/bbrc.1996.0379

Marcote MJ, Pagano M, Draetta G. cdc2 protein kinase: structure‐function relationships. Regul Eukar Cell Cycle 1992:30-41. DOI: https://doi.org/10.1002/9780470514320.ch4

Kaplan KB, Burds AA, Swedlow JR, et al. A role for the adenomatous polyposis coli protein in chromosome segregation. Nature Cell Biol 2001;3:429-32. DOI: https://doi.org/10.1038/35070123

Yamamoto H, Monden T, Miyoshi H, et al. Cdk2/cdc2 expression in colon carcinogenesis and effects of cdk2/cdc2 inhibitor in colon cancer cells. Int J Oncol 1998;13:233-42. DOI: https://doi.org/10.3892/ijo.13.2.233

Murphy KJ, Nielson KR, Albertine KH. Defining a molecularly normal colon. J Histochem Cytochem 2001;49:667-8. DOI: https://doi.org/10.1177/002215540104900516

Liu Y, Prasad R, Beard WA, et al. Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase β. J Biol Chem 2007;282:13532-41. DOI: https://doi.org/10.1074/jbc.M611295200

Oshima M, Oshima H, Kitagawa K, et al. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci 1995;92:4482-6. DOI: https://doi.org/10.1073/pnas.92.10.4482

Bromberg J, Wang TC. Inflammation and cancer: IL-6 and STAT3 complete the link. Cancer Cell 2009;15:79-80. DOI: https://doi.org/10.1016/j.ccr.2009.01.009

Taniguchi K, Moroishi T, De Jong PR, et al. YAP–IL-6ST autoregulatory loop activated on APC loss controls colonic tumorigenesis. Proc Natl Acad Sci 2017;114:1643-8. DOI: https://doi.org/10.1073/pnas.1620290114

Parsons SJ, Parsons JT. Src family kinases, key regulators of signal transduction. Oncogene 2004;23:7906-9. DOI: https://doi.org/10.1038/sj.onc.1208160

Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet 2013;14:204-20. DOI: https://doi.org/10.1038/nrg3354

Sheaffer KL, Elliott EN, Kaestner KH. DNA hypomethylation contributes to genomic instability and intestinal cancer initiation. Cancer Prev Res (Phila) 2016;9:534-46. DOI: https://doi.org/10.1158/1940-6207.CAPR-15-0349

Arnold CN, Goel A, Niedzwiecki D, et al. APC promoter hypermethylation contributes to the loss of APC expression in colorectal cancers with allelic loss on 5q. Cancer Biol Ther 2004;3:960-4. DOI: https://doi.org/10.4161/cbt.3.10.1113

Srivastava S, Dewangan J, Mishra S, et al. Piperine and Celecoxib synergistically inhibit colon cancer cell proliferation via modulating Wnt/β-catenin signaling pathway. Phytomedicine 2021;84:153484. DOI: https://doi.org/10.1016/j.phymed.2021.153484

Rather RA, Bhagat M. Cancer chemoprevention and piperine: molecular mechanisms and therapeutic opportunities. Front Cell Develop Biol 2018;6:10. DOI: https://doi.org/10.3389/fcell.2018.00010

Oshima M, Dinchuk JE, Kargman SL, et al. Suppression of intestinal polyposis in ApcΔ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 1996;87:803-9. DOI: https://doi.org/10.1016/S0092-8674(00)81988-1

Dubois RN. Role of inflammation and inflammatory mediators in colorectal cancer. Trans Am Clin Climatol Assoc 2014;125:358.

Bi X, Pohl N, Dong H, Yang W. Selenium and sulindac are synergistic to inhibit intestinal tumorigenesis in Apc/p21 mice. J Hematol Oncol 2013;6:8. DOI: https://doi.org/10.1186/1756-8722-6-8

Théard D, Raspe MA, Kalicharan D, et al. Formation of E-cadherin/β-catenin-based Adherens junctions in hepatocytes requires serine-10 in p27 (Kip1). Mol Biol Cell 2008;19:1605-13. DOI: https://doi.org/10.1091/mbc.e07-07-0661

Sadot E, Geiger B, Oren M, Ben-Ze'ev A. Down-regulation of β-catenin by activated p53. Mol Cell Biol 2001;21:6768-81. DOI: https://doi.org/10.1128/MCB.21.20.6768-6781.2001

Zilberberg A, Lahav L, Rosin-Arbesfeld R. Restoration of APC gene function in colorectal cancer cells by aminoglycoside- and macrolide-induced read-through of premature termination codons. Gut 2010;59:496-507.

Zilberberg A, Lahav L, Rosin-Arbesfeld R. Restoration of APC gene function in colorectal cancer cells by aminoglycoside-and macrolide-induced read-through of premature termination codons. Gut 2010;59:496-507. DOI: https://doi.org/10.1136/gut.2008.169805

Hamoya T, Miyamoto S, Tomono S, et al. Chemopreventive effects of a low-side-effect antibiotic drug, erythromycin, on mouse intestinal tumors. J Clin Biochem Nutr 2017;60:199-207. DOI: https://doi.org/10.3164/jcbn.16-107

Floquet C, Rousset J-P, Bidou L. Readthrough of premature termination codons in the adenomatous polyposis coli gene restores its biological activity in human cancer cells. PLoS One 2011;6(8). DOI: https://doi.org/10.1371/journal.pone.0024125

Macnab SA, Turrell SJ, Carr IM, et al. Herpesvirus saimiri-mediated delivery of the adenomatous polyposis coli tumour suppressor gene reduces proliferation of colorectal cancer cells. Int J Oncol 2011;39:1173-81.

Bangalore S, Kumar S, Kjeldsen SE, et al. Antihypertensive drugs and risk of cancer: network meta-analyses and trial sequential analyses of 324 168 participants from randomised trials. Lancet Oncol 2011;12:65-82. DOI: https://doi.org/10.1016/S1470-2045(10)70260-6

Luo Y, Ohmori H, Shimomoto T, et al. Anti-angiotensin and hypoglycemic treatments suppress liver metastasis of colon cancer cells. Pathobiology 2011;78:285-90. DOI: https://doi.org/10.1159/000330169

Kuniyasu H. Multiple roles of angiotensin in colorectal cancer. World J Clin Oncol 2012;3:150. DOI: https://doi.org/10.5306/wjco.v3.i12.150

Dougherty U, Mustafi R, Haider HI, et al. Losartan and vitamin D inhibit colonic tumor development in a conditional Apc-deleted mouse model of sporadic colon cancer. Cancer Prevent Res 2019;12:433-48. DOI: https://doi.org/10.1158/1940-6207.CAPR-18-0380

Ballou LM, Lin RZ. Rapamycin and mTOR kinase inhibitors. J Chem Biol 2008;1:27-36. DOI: https://doi.org/10.1007/s12154-008-0003-5

Hardiman KM, Liu J, Feng Y, et al. Rapamycin inhibition of polyposis and progression to dysplasia in a mouse model. PLoS One 2014;9:e96023. DOI: https://doi.org/10.1371/journal.pone.0096023

Houghton PJ. Everolimus. Clin Cancer Res 2010;16:1368-72. DOI: https://doi.org/10.1158/1078-0432.CCR-09-1314

Fujishita T, Aoki K, Lane HA, et al. Inhibition of the mTORC1 pathway suppresses intestinal polyp formation and reduces mortality in ApcΔ716 mice. Proc Natl Acad Sci 2008;105:13544-9. DOI: https://doi.org/10.1073/pnas.0800041105

Safaeian M, Robbins H, Berndt S, et al. Risk of colorectal cancer after solid organ transplantation in the United States. Am J Transplant 2016;16:960-7. DOI: https://doi.org/10.1111/ajt.13549

Ling G, Lamprecht S, Shubinsky G, et al. Mycophenolate mofetil alone and in combination with tacrolimus inhibits the proliferation of HT-29 human colonic adenocarcinoma cell line and might interfere with colonic tumorigenesis. Anticancer Res 2018;38:3333-9. DOI: https://doi.org/10.21873/anticanres.12599

Pinsk V, Pinsk I, Ling G, et al. Complete reversion of familial adenomatous polyposis phenotype associated with tacrolimus and mycophenolate mofetil treatment following kidney transplantation. Anticancer Res 2017;37:3105-9. DOI: https://doi.org/10.21873/anticanres.11667

Corvinus FM, Orth C, Moriggl R, et al. Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth. Neoplasia (New York, NY) 2005;7:545. DOI: https://doi.org/10.1593/neo.04571

Ou C, Sun Z, Li S, et al. Dual roles of yes-associated protein (YAP) in colorectal cancer. Oncotarget 2017;8:75727. DOI: https://doi.org/10.18632/oncotarget.20155

Xiu M-X, Liu Y-M, Kuang B-H. The oncogenic role of Jagged1/Notch signaling in cancer. Biomed Pharmacother 2020;129:110416. DOI: https://doi.org/10.1016/j.biopha.2020.110416

Xu L, Lin W, Wen L, Li G. Lgr5 in cancer biology: functional identification of Lgr5 in cancer progression and potential opportunities for novel therapy. Stem Cell Res Ther 2019;10:219. DOI: https://doi.org/10.1186/s13287-019-1288-8

Zhang Z, Bu X, Chen H, et al. Bmi-1 promotes the invasion and migration of colon cancer stem cells through the downregulation of E-cadherin. Int J Mol Med 2016;38:1199-207. DOI: https://doi.org/10.3892/ijmm.2016.2730

Chen L, Chan SW, Zhang X, et al. Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes Develop 2010;24:290-300. DOI: https://doi.org/10.1101/gad.1865310

Taniguchi K, Wu L-W, Grivennikov SI, et al. A gp130–Src–YAP module links inflammation to epithelial regeneration. Nature 2015;519:57-62. DOI: https://doi.org/10.1038/nature14228

Deng G, Song G-A, Pong E, et al. Promoter methylation inhibits APC gene expression by causing changes in chromatin conformation and interfering with the binding of transcription factor CCAAT-binding factor. Cancer Res 2004;64:2692-8. DOI: https://doi.org/10.1158/0008-5472.CAN-03-3000

Seshagiri S, Stawiski EW, Durinck S, et al. Recurrent R-spondin fusions in colon cancer. Nature 2012;488:660-4. DOI: https://doi.org/10.1038/nature11282

Madan B, Ke Z, Harmston N, et al. Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene 2016;35:2197-207. DOI: https://doi.org/10.1038/onc.2015.280

El-Khoueiry AB, Ning Y, Yang D, et al. A phase I first-in-human study of PRI-724 in patients (pts) with advanced solid tumors. American Society of Clinical Oncology; 2013. DOI: https://doi.org/10.1200/jco.2013.31.15_suppl.2501

Jiang S, Zhang M, Sun J, Yang X. Casein kinase 1α: biological mechanisms and theranostic potential. Cell Commun Signal 2018;16:1-24. DOI: https://doi.org/10.1186/s12964-018-0236-z

Richter J, Kretz A-L, Lemke J, et al. CK1α overexpression correlates with poor survival in colorectal cancer. BMC Cancer 2018;18:1-11. DOI: https://doi.org/10.1186/s12885-018-4019-0

Schittek B, Sinnberg T. Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol Cancer 2014;13:231. DOI: https://doi.org/10.1186/1476-4598-13-231

Duan S, Skaar JR, Kuchay S, et al. mTOR generates an auto-amplification loop by triggering the βTrCP-and CK1α-dependent degradation of DEPTOR. Mol Cell 2011;44:317-24. DOI: https://doi.org/10.1016/j.molcel.2011.09.005

Krönke J, Fink EC, Hollenbach PW, et al et al. Lenalidomide induces ubiquitination and degradation of CK1α in del (5q) MDS. Nature 2015;523:183-8. DOI: https://doi.org/10.1038/nature14610

Honaker Y, Piwnica-Worms H. Casein kinase 1 functions as both penultimate and ultimate kinase in regulating Cdc25A destruction. Oncogene 2010;29:3324-34. DOI: https://doi.org/10.1038/onc.2010.96

Huang S-MA, Mishina YM, Liu S, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 2009;461:614-20. DOI: https://doi.org/10.1038/nature08356

Lau T, Chan E, Callow M, et al. A novel tankyrase small-molecule inhibitor suppresses APC mutation–driven colorectal tumor growth. Cancer Res 2013;73:3132-44. DOI: https://doi.org/10.1158/0008-5472.CAN-12-4562

Jeong W-J, Ro EJ, Choi K-Y. Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway. NPJ Precision Oncol 2018;2:1-10. DOI: https://doi.org/10.1038/s41698-018-0049-y

Van der Flier LG, Sabates–Bellver J, Oving I, et al. The intestinal Wnt/TCF signature. Gastroenterology 2007;132:628-32. DOI: https://doi.org/10.1053/j.gastro.2006.08.039

Korinek V, Barker N, Moerer P, et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genetics 1998;19:379-83. DOI: https://doi.org/10.1038/1270

Mahmoudi T, Li VS, Ng SS, et al. The kinase TNIK is an essential activator of Wnt target genes. The EMBO J 2009;28:3329-40. DOI: https://doi.org/10.1038/emboj.2009.285

Shitashige M, Satow R, Jigami T, et al. Traf2-and Nck-interacting kinase is essential for Wnt signaling and colorectal cancer growth. Cancer Res 2010;70:5024-33. DOI: https://doi.org/10.1158/0008-5472.CAN-10-0306

Masuda M, Uno Y, Ohbayashi N, et al. TNIK inhibition abrogates colorectal cancer stemness. Nature Commun 2016;7:12586. DOI: https://doi.org/10.1038/ncomms12586

Li G, Su Q, Liu H, et al. Frizzled7 promotes epithelial-to-mesenchymal transition and stemness via activating canonical Wnt/β-catenin pathway in gastric cancer. Int J Biol Sci 2018;14:280. DOI: https://doi.org/10.7150/ijbs.23756

Flanagan DJ, Barker N, Di Costanzo NS, et al. Frizzled-7 is required for Wnt signaling in gastric tumors with and without Apc mutations. Cancer Res 2019;79:970-81. DOI: https://doi.org/10.1158/0008-5472.CAN-18-2095

Jimeno A, Gordon M, Chugh R, et al. A first-in-human phase I study of the anticancer stem cell agent ipafricept (OMP-54F28), a decoy receptor for Wnt ligands, in patients with advanced solid tumors. Clinical Cancer Res 2017;23:7490-7. DOI: https://doi.org/10.1158/1078-0432.CCR-17-2157

Pinzone JJ, Hall BM, Thudi NK, et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 2009;113:517-25. DOI: https://doi.org/10.1182/blood-2008-03-145169

Shen Q, Yang X-R, Tan Y, et al. High level of serum protein DKK1 predicts poor prognosis for patients with hepatocellular carcinoma after hepatectomy. Hepat Oncol 2015;2:231-44. DOI: https://doi.org/10.2217/hep.15.12

Yu B, Yang X, Xu Y, et al. Elevated expression of DKK1 is associated with cytoplasmic/nuclear β-catenin accumulation and poor prognosis in hepatocellular carcinomas. J Hepatol 2009;50:948-57. DOI: https://doi.org/10.1016/j.jhep.2008.11.020

Lyros O, Lamprecht A-K, Nie L, et al. Dickkopf-1 (DKK1) promotes tumor growth via Akt-phosphorylation and independently of Wnt-axis in Barrett’s associated esophageal adenocarcinoma. Am J Cancer Res 2019;9:330.

Liu Y, Tang W, Xie L, et al. Prognostic significance of dickkopf-1 overexpression in solid tumors: a meta-analysis. Tumor Biol 2014;35:3145-54. DOI: https://doi.org/10.1007/s13277-013-1411-x

Sui Q, Zheng J, Liu D, et al. Dickkopf-related protein 1, a new biomarker for local immune status and poor prognosis among patients with colorectal liver oligometastases: a retrospective study. BMC Cancer 2019;19:1-10. DOI: https://doi.org/10.1186/s12885-019-6399-1

Dong L-L, Qu L-Y, Chu L-Y, et al. Serum level of DKK-1 and its prognostic potential in non–small cell lung cancer. Diagnost Pathol 2014;9:52. DOI: https://doi.org/10.1186/1746-1596-9-52

Wall JA, Klempner SJ, Arend RC. The anti-DKK1 antibody DKN-01 as an immunomodulatory combination partner for the treatment of cancer. Exp Opin Investig Drugs 2020 [In press]. DOI: https://doi.org/10.1080/13543784.2020.1769065

Betella I, Turbitt WJ, Szul T, et al. Wnt signaling modulator DKK1 as an immunotherapeutic target in ovarian cancer. Gynecol Oncol 2020 [In press]. DOI: https://doi.org/10.1016/j.ygyno.2020.03.010

Gonzalez-Sancho JM, Aguilera O, Garcia JM, et al. The Wnt antagonist DICKKOPF-1 gene is a downstream target of β-catenin/TCF and is downregulated in human colon cancer. Oncogene 2005;24:1098-103. DOI: https://doi.org/10.1038/sj.onc.1208303

Kuphal S, Lodermeyer S, Bataille F, et al. Expression of Dickkopf genes is strongly reduced in malignant melanoma. Oncogene 2006;25:5027-36. DOI: https://doi.org/10.1038/sj.onc.1209508

Aguilera O, Fraga MF, Ballestar E, et al. Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 2006;25:4116-21. DOI: https://doi.org/10.1038/sj.onc.1209439

Safari E, Mosayebi G, Khorram S. Dkk-3 as a potential biomarker for diagnosis and prognosis of colorectal cancer. Med J Islam Rep Iran 2018;32:86. DOI: https://doi.org/10.14196/mjiri.32.86

Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 2014;740:364-78. DOI: https://doi.org/10.1016/j.ejphar.2014.07.025

VanKlompenberg MK, Bedalov CO, Soto KF, Prosperi JR. APC selectively mediates response to chemotherapeutic agents in breast cancer. BMC Cancer 2015;15:457. DOI: https://doi.org/10.1186/s12885-015-1456-x

Kariv R, Caspi M, Fliss‐Isakov N, et al. Resorting the function of the colorectal cancer gatekeeper adenomatous polyposis coli. Int J Cancer 2020;146:1064-74. DOI: https://doi.org/10.1002/ijc.32557

Chan AT, Ogino S, Fuchs CS. Aspirin use and survival after diagnosis of colorectal cancer. JAMA 2009;302:649-58. DOI: https://doi.org/10.1001/jama.2009.1112

Moran AE, Hunt DH, Javid SH, et al. Apc deficiency is associated with increased Egfr activity in the intestinal enterocytes and adenomas of C57BL/6J-Min/+ mice. J Biol Chem 2004;279:43261-72. DOI: https://doi.org/10.1074/jbc.M404276200

Samadder NJ, Kuwada SK, Boucher KM, et al. Association of sulindac and erlotinib vs placebo with colorectal neoplasia in familial adenomatous polyposis: secondary analysis of a randomized clinical trial. JAMA Oncol 2018;4:671-7. DOI: https://doi.org/10.1001/jamaoncol.2017.5431

Hawcroft G, Loadman PM, Belluzzi A, Hull MA. Effect of eicosapentaenoic acid on E-type prostaglandin synthesis and EP4 receptor signaling in human colorectal cancer cells. Neoplasia 2010;12:618-27. DOI: https://doi.org/10.1593/neo.10388

West NJ, Clark SK, Phillips RK, et al. Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis. Gut 2010;59:918-25. DOI: https://doi.org/10.1136/gut.2009.200642

Lynch PM, Burke CA, Phillips R, et al. An international randomised trial of celecoxib versus celecoxib plus difluoromethylornithine in patients with familial adenomatous polyposis. Gut 2016;65:286-95. DOI: https://doi.org/10.1136/gutjnl-2014-307235

Nowotarski SL, Woster PM, Casero RA, Jr. Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert Rev Mol Med 2013;15:e3-e. DOI: https://doi.org/10.1017/erm.2013.3

Rahib L, Wehner MR, Matrisian LM, Nead KT. Estimated projection of US cancer incidence and death to 2040. JAMA Netw Open 2021;4:e214708-e. DOI: https://doi.org/10.1001/jamanetworkopen.2021.4708

Published
2021-06-24
Info
Issue
Section
Reviews
Keywords:
APC gene, colon cancer, colorectal cancer.
Statistics
  • Abstract views: 510

  • PDF: 77
  • HTML: 0
How to Cite
Noe, O., Filipiak, L., Royfman, R., Campbell, A., Lin, L., Hamouda, D., Stanbery, L., & Nemunaitis, J. (2021). Adenomatous polyposis coli in cancer and therapeutic implications. Oncology Reviews, 15(1). https://doi.org/10.4081/oncol.2021.534